K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

là sao

7 tháng 9 2021

mọi người ơi mình cần gấp làm giúp mình với

7 tháng 9 2021

ai chỉ mình với:)

7 tháng 9 2021

CM GÓC LÀ SAO

15 tháng 10 2021

a: Xét ΔDAM có \(\widehat{DAM}=\widehat{DMA}\left(=\widehat{BAM}\right)\)

nên ΔDAM cân tại D

hay DA=DM

Xét ΔBNC có \(\widehat{BNC}=\widehat{BCN}\)

nên ΔBNC cân tại B

Suy ra: BN=BC

14 tháng 10 2021

a: Ta có: AD//BC

AC\(\perp\)AD

Do đó: AC\(\perp\)BC

Xét ΔBAK vuông tại A có AC là đường cao ứng với cạnh huyền BK, ta được:

\(CB\cdot CK=AC^2\left(1\right)\)

Xét ΔADC vuông tại A có AH là đường cao ứng với cạnh huyền CD,ta được:

\(CH\cdot CD=AC^2\left(2\right)\)

Từ (1) và(2) suy ra \(CB\cdot CK=CH\cdot CD\)

15 tháng 10 2020

Mk đag cần gấp mn giúp mk vs

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
16 tháng 11 2023

a: M là trung điểm của AB

=>\(MA=MB=\dfrac{AB}{2}\)

mà \(CD=\dfrac{AB}{2}\)

nên MA=MB=CD

Xét tứ giác AMCD có

AM//DC

AM=DC

Do đó: AMCD là hình bình hành

Xét tứ giác DCBM có

DC//BM

DC=BM

Do đó: DCBM là hình bình hành

b: DCBM là hình bình hành

=>DM//CB

=>\(\widehat{AMD}=\widehat{CBM}\)(hai góc đồng vị)

mà \(\widehat{CBM}=\widehat{ECD}\)(hai góc đồng vị, DC//AB)

nên \(\widehat{DMA}=\widehat{ECD}\)

Xét ΔEAB có DC//AB

nên \(\dfrac{ED}{EA}=\dfrac{DC}{AB}=\dfrac{1}{2}\)

=>\(ED=\dfrac{1}{2}EA\)

=>D là trung điểm của EA

=>ED=DA