Tìm a là số nguyên thỏa mãn điều kiện:
a, I a I < 11 ; b, I a I > 11 ; c, I a I = 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn kia ko biết thì ko cần trl lm gì lớp 5 thì nên trl câu hỏi của lớp 5 thôi cứ lên r trl linh tinh
Bn Ngô Thọ Thắng tham khảo link này nha
https://lazi.vn/edu/exercise/tim-so-tu-nhien-a-b-thoa-man-dieu-kien-a-2b-49-va-bcnnab-uclnab-56
Gọi số hàng chục là a
Số hàng đơn vị là b
Số cần tìm là 10.a+b
tổng các chữ số là a+b
theo giả thiêt
10a+b chia a+b được 2 dư 7 10a+b là số bị chia
a+b là số chia
Vậy 10a+b = 2(a+b) +7
Kèm theo điều kiện
a là số tự nhiên có 1 chữ sô từ 1 đến 9 (1)
b là số tự nhiên có 1 chữ sô từ 0 đến 9 (2)
a+b >7 điều kiện số chia lớn hơn số dư (3)
Từ 10a+b = 2(a+b) +7
=> 10a+b = 2a+2b +7
=> 8a = 7+b
=> a = (7+b) : 8
Vì a là số tự nhiên nên
7+b phải chia hết cho 8
7+b có thể nhận các giá trị 8 , 16, 24, 32 ,40 v..v
Nếu ----7+b =8 => b=1
a=1 Loại vì a+b=2 <7 Vi phạm điều (3) ----7+b = 16 => b= 9 a= 2
Thỏa mãn toàn bộ điều kiện .
Số cần tìm là 10x2+9 =29 ----7+b = 24 => b= 17 a= 3 Loại vì b có 2 chữ số theo điều kiện (2 )
Không xét b+7 = 32, 40,48 v..v nữa vì b+7 càng to thì b càng có 2 chữ số hoặc hơn
Đáp Số : 29
1. Tìm các số nguyên a, b thỏa mãn điều kiện:
\(\frac{11}{17}<\frac{a}{b}<\frac{23}{29}\) và 8b-9a=31
\(11< a< 15\)
\(\Rightarrow a=\left\{12;13;14\right\}\)
\(12< c< 15\)
\(\Rightarrow c=\left\{13;14\right\}\)
\(a< b< c\)
\(\Rightarrow a=12,b=13,c=14\)
Ta có: 11 < a < 15
=> a \(\in\left\{12;13;14\right\}\)
12 < c < 15
Mà a < b < c
=> a = 12 ; b = 13 ; c = 14
a. | a | < 11
=> \(\left|a\right|\in\left\{0;1;2;3;...;10\right\}\)
=> \(a\in\left\{-10;-9;-8;...;0;...;8;9;10\right\}\)
b. | a | > 11
=> \(\left|a\right|\in\left\{12;13;14;15;...\right\}\)
=> \(a\in\left\{...;-15;-14;-13;-12;12;13;14;15;...\right\}\)
c. | a | = 11
=> \(a\in\left\{-11;11\right\}\)