Cho dãy số ( a n ) xác định bởi a 1 = 1 ; a n + 1 = 3 a n + 10 ; ∀ n ∈ N * . Tìm số hạng thứ 15 của dãy số a n
A. a 15 = 28697809
B. a 15 = 28697814
C. a 15 = 9569533
D. a 15 = 86093437
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = n^2 - 1:
u1 = 1^2 - 1 = 0 u2 = 2^2 - 1 = 3 u3 = 3^2 - 1 = 8 u4 = 4^2 - 1 = 15
Vậy u1 = 0, u2 = 3, u3 = 8, u4 = 15.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 99, ta giải phương trình n^2 - 1 = 99:
n^2 - 1 = 99 n^2 = 100 n = 10 hoặc n = -10
Vì số hạng của dãy phải là số tự nhiên nên ta chọn n = 10. Vậy số hạng thứ mấy có giá trị 99 là u10.
a) Để tính các số hạng u1, u2, u3, u4 của dãy (un), ta thay n = 1, 2, 3, 4 vào công thức un = (2n - 1)/(n + 1):u1 = (21 - 1)/(1 + 1) = 1/2 u2 = (22 - 1)/(2 + 1) = 3/3 = 1 u3 = (23 - 1)/(3 + 1) = 5/4 u4 = (24 - 1)/(4 + 1) = 7/5
Vậy u1 = 1/2, u2 = 1, u3 = 5/4, u4 = 7/5.
b) Để tìm số hạng thứ mấy trong dãy có giá trị 137137, ta giải phương trình (2n - 1)/(n + 1) = 137137:
(2n - 1)/(n + 1) = 137137 2n - 1 = 137137(n + 1) 2n - 1 = 137137n + 137137 137135n = 137138 n = 1
Vậy số hạng thứ mấy có giá trị 137137 là u1.
2:
a: \(u_1=\dfrac{2-1}{1+1}=\dfrac{1}{2}\)
\(u_2=\dfrac{2\cdot2-1}{2+1}=1\)
\(u_3=\dfrac{2\cdot3-1}{3+1}=\dfrac{5}{4}\)
\(u_4=\dfrac{2\cdot4-1}{4+1}=\dfrac{7}{5}\)
b: Đặt \(\dfrac{2n-1}{n+1}=\dfrac{13}{7}\)
=>7(2n-1)=13(n+1)
=>14n-7=13n+13
=>n=20
=>13/7 là số hạng thứ 20 trong dãy
1:
a: u1=1^2-1=0
u2=2^2-1=3
u3=3^2-1=8
u4=4^2-1=15
b: 99=n^2-1
=>n^2=100
mà n>=0
nên n=10
=>99 là số thứ 10 trong dãy
1:
a:
u1=1^2+1=2
u2=2^2+1=5
u3=3^2+1=10
u4=4^2+1=17
b: Đặt 101=n^2+1
=>n^2=100
=>n=10
=>101 là số hạng thứ 10
2:
a: \(u1=\dfrac{1+1}{2-1}=2\)
\(u2=\dfrac{2+1}{2\cdot2-1}=\dfrac{3}{3}=1\)
\(u_3=\dfrac{3+1}{2\cdot3-1}=\dfrac{4}{5}\)
\(u_4=\dfrac{4+1}{2\cdot4-1}=\dfrac{5}{7}\)
b: Đặt \(\dfrac{n+1}{2n-1}=\dfrac{31}{59}\)
=>59(n+1)=31(2n-1)
=>62n-31=59n+59
=>3n=90
=>n=30
=>31/59 là số hạng thứ 30 trong dãy
\(U_n=\dfrac{an^2-1}{n^2+3}\)
\(=\dfrac{an^2+3a-3a-1}{n^2+3}\)
\(=a+\dfrac{-3a-1}{n^2+3}\)
Để dãy này là dãy tăng thì \(U_{n+1}>U_n\)
=>\(a+\dfrac{-3a-1}{\left(n+1\right)^2+3}>a+\dfrac{-3a-1}{n^2+3}\)
=>\(\dfrac{-3a-1}{\left(n+1\right)^2+3}>\dfrac{-3a-1}{n^2+3}\)
=>\(\dfrac{3a+1}{\left(n+1\right)^2+3}< \dfrac{3a+1}{n^2+3}\)(1)
TH1: 3a+1>0
=>a>-1/3
(1)=>\(\dfrac{1}{\left(n+1\right)^2+3}< \dfrac{1}{n^2+3}\)
=>\(\left(n+1\right)^2+3>n^2+3\)
=>\(\left(n+1\right)^2>n^2\)
=>\(n^2+2n+1-n^2>0\)
=>\(2n+1>0\)(luôn đúng với mọi n>=1)
TH2: 3a+1<0
=>a<-1/3
(2) trở thành \(\dfrac{1}{\left(n+1\right)^2+3}>\dfrac{1}{n^2+3}\)
=>\(\left(n+1\right)^2+3< n^2+3\)
=>\(n^2+2n+1-n^2< 0\)
=>2n+1<0
=>2n<-1
=>\(n< -\dfrac{1}{2}\)(loại)
Vậy: \(a>-\dfrac{1}{3}\)
Đáp án đúng là: D
Dãy số (un) được xác định bởi: u1 = 3 và un = \(\frac{1}{3}\).un-1 với mọi n ≥ 2 là cấp số nhân với số hạng đầu u1 = 3 và q = \(\frac{1}{3}\).
Đáp án A