K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

Ta có: ABC đồng dạng với tam giác A'B'C' nên ta có:

\(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}=\frac{1}{3}\)(vì \(\frac{AB}{A'B'}=\frac{2}{6}=\frac{1}{3}\)nên 1/3 là tỉ số đồng dạng

hay \(\frac{AC}{A'C'}=\frac{1}{3}\Leftrightarrow\)\(\frac{4}{A'C'}=\frac{1}{3}\Rightarrow A'C'=\frac{4.3}{1}=12\left(cm\right)\)

vậy .....................

ΔABC đồng dạng với ΔA'B'C'

=>\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}\)

A'B'=10,8+16,2=27(cm)

=>\(\dfrac{B'C'}{24.3}=\dfrac{A'C'}{32.7}=\dfrac{16.2}{27}=\dfrac{3}{5}\)

=>B'C'=14,58cm; A'C'=19,62(cm)

ΔABC đồng dạng với ΔA'B'C'

=>\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)

=>\(\dfrac{A'B'}{3}=\dfrac{A'C'}{7}=\dfrac{B'C'}{5}\)

=>A'B'=4,5cm

=>\(\dfrac{A'C'}{7}=\dfrac{B'C'}{5}=\dfrac{3}{2}\)

=>A'C'=10,5cm; B'C'=7,5cm

11 tháng 3 2016

Diện tích tam giác ABC=20,25cm2

11 tháng 3 2016

ta có tỉ số chu vi bằng tỉ số đồng dạng

18 tháng 4 2020

xdhxef

18 tháng 4 2020

6.)

Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất  của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.

Theo đề:\(A'B'\)=4,5

Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

    \(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)

   \(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

21 tháng 4 2020

Bài 1 a) có vì hai tam giác bằng nhau thì đồng dạng với nhau bởi các cặp cạnh bằng nhau nên tương ứng tỉ lệ với nhau và bằng 1

nên tỉ số đồng dạng cũng =1

b)do tam giác A'B'C'~tam giác ABC theo tỉ số k nên A'B'/AB=k

suy ra AB/A'B'=1/k nên tam giác ABC~tam giác A'B'C' theo tỉ số 1/k

Bài 2 b) do tam giác def đồng dạng với tam giác mnp nên

de/mn=df/mp=ef/np=4/6=2/3

do df=5cm nên mp=7,5cm

do np=9cm nên ef=6cm

18 tháng 1 2018

vé hình, dùng định lí talet áp dụng tàm giác đồng dạng

ΔABC đồng dạng với ΔA'B'C'

=>A'B'/AB=B'C'/BC=A'C'/AC

=>A'B'/162=B'C'/243=A'C'/327

=>A'B'/54=B'C'/81=A'C'/109