Tìm số nguyên n biết: 25/5^n=5; 1/2.2^n+4.2^n=9.2^n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x.25+x.75=31000
x.(25+75)=31000
x.100=31000
x=31000:100
x=310
Ta có:\(25< 5^n< 625\)
\(\Leftrightarrow5^2< 5^n< 5^4\)
\(\Leftrightarrow2< x< 4\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
\(5^4.25^n=125\)
\(5^4.25^n=5^3\)
\(25^n=5^3:5^4\)
\(25^n=0.2\)
\(25^n=25^{-0,5}\)
\(→n=-0,5\)
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
a) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\left(-3\right)^n=\dfrac{\left(-3\right)^4}{\left(-3\right)^5}=\left(-3\right)^{-1}\)
n = -1
Vậy n = -1
b) \(\dfrac{25}{5^n}=5\)
\(\dfrac{5^2}{5^n}=5^1\)
\(5^n=\dfrac{5^2}{5^1}=5^1\)
n = 1
Vậy n = 1
c) \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(2^{n-1}+4\cdot2^{n-1}\cdot2=9\cdot2^5\)
\(2^{n-1}+8\cdot2^{n-1}=9\cdot2^5\)
\(\left(8+1\right)\cdot2^{n-1}=9\cdot2^5\)
\(9\cdot2^{n-1}=9\cdot2^5\)
\(2^{n-1}=2^5\cdot\dfrac{9}{9}=2^5\)
n - 1 = 5
n = 5 + 1 = 6
Vậy n = 6
a) 81/(-3)ⁿ = -243
(-3)ⁿ = 81 : (-243)
(-3)ⁿ = -1/3
n = -1
b) 25/5ⁿ = 5
5ⁿ = 25 : 5
5ⁿ = 5
n = 1
c) 1/2 . 2ⁿ + 4 . 2ⁿ = 9 . 2⁵
2ⁿ . (1/2 + 4) = 9 . 32
2ⁿ . 9/2 = 288
2ⁿ = 288 : 9/2
2ⁿ = 64
2ⁿ = 2⁶
n = 6
| x - 1 | + | x + 3 | = 3 ( * )
xét : x - 1 = 0 => x = 1
x + 3 = 0 => x = -3
x - 1 < 0 => x < 1
x + 3 < 0 => x < -3
x - 1 > 0 => x > 1
x + 3 > 0 => x > -3
Lập bảng xét dấu,ta có :
x -3 1
x+3 - 0 + | +
x-1 - | - 0 +
nếu x < -3 thì * <=> : ( 1 - x ) + ( -3 - x ) = 3
1 - x + ( -3 ) - x = 3
-2x = 5
x = -5/2 ( loại )
nếu -3 \(\le\)x < 1 thì * <=> : ( 1 - x ) + ( x + 3 ) = 3
1 - x + x + 3 = 3
0x = -1 ( ko có GT x thỏa mãn )
nếu x \(\ge\)1 thì * <=> : ( x -1 ) + ( x + 3 ) = 3
x - 1 + x + 3 = 3
2x = 1
x = 1/2 ( ko có GT x thỏa mãn )
Vậy ko có GT x nào thỏa mãn bài trên.
a) 25 < 5n:5 < 625
52 < 5n:5 < 54
2 < n:5 < 4
=> n : 5 = 3
=> n = 15
b) 34 < \(\frac{1}{9}.27^n\)< 310
34 < \(\frac{27^n}{9}\)< 310
34 < 33n-2 < 310
=> 3n - 2 \(\in\) { 5 ; 6 ; 7 ; 8 ; 9 }
Nếu 3n - 2 = 5 thì n = 7/3 ( loại )
Nếu 3n - 2 = 6 thì n = 8/3 ( loại )
Nếu 3n - 2 = 7 thì n = 3 ( thỏa mãn )
Nếu 3n - 2 = 8 thì n = 10/3 ( loại )
Nếu 3n - 2 = 9 thì n = 11/3 ( loại )
Vậy n = 3
a ) 3n + 25 ⋮ n - 4 <=> 3.( n - 4 ) + 37 ⋮ n - 4
Vì n - 4 ⋮ n - 4 . Để 3.( n - 4 ) + 37 ⋮ n - 4 thì 37 ⋮ n - 4 => n - 4 ∈ Ư ( 37 ) = { + 1 ; + 37 }
Ta có : n - 4 = 1 => n = 1 + 4 = 5 ( nhận )
n - 4 = - 1 => n = - 1 + 4 = 3 ( nhận )
n - 4 = 37 => n = 37 + 4 = 41 ( nhận )
n - 4 = - 37 => n = - 37 + 4 = - 33 ( nhận )
Vậy n ∈ { - 33 ; 3 ; 5 ; 41 }
Câu b tương tự
n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số.
=> số duy nhất thỏa mãn là n = 6
**** mik nha
n+1;n+5;n+7;n+13;n+17;n+25;n+37.
cách làm:
n+7=n+7.1
n+1=(n+1)+7.0
n+37=(n+2)+7.5
n+17=(n+3)+7.2
n+25=(n+40)+7.3
n+5=(n+5)+7.0
n+13=(n+6)+7.1
các số khi chia cho 7 sẽ có 7 số dư khác nhau
==>trong các số trên có ít nhất 1 số chia hết cho 7
các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại
==>n+1 hoặc n+5 chia hết cho 7
+trường hợp 1
n+1=7==>n=6,khi đó các số đều là SNT
trường hợp 2
n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6