Cho hàm số y = f x liên tục và có đạo hàm trên I thỏa mãn f 2 = - 2 ; ∫ 0 2 f x d x = 1 . Tính tích phân I = ∫ 0 4 f ' x d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Xét I = ∫ 0 1 f ' x d x Đặt t = x → t 2 = x → 2 t d t = d x
Đổi cận x = 0 → t = 0 x = 1 → t = 1 . Khi đó I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A
Tính A = ∫ 0 1 t f ' ( t ) d t . Đặt u = t d v = f ' t d t → d u = d t v = f t
Khi đó
Đáp án A
Đặt t = x ⇔ d t = d x 2 x ⇔ d x = 2 d t ; x = 0 ⇒ t = 0 x = 4 ⇒ t = 2
Khi đó I = ∫ 0 4 f ' x d x = ∫ 0 2 2 t . f ' t d t = 2 ∫ 0 2 t . f ' t d t
Đặt u = t d v = f ' t d t ⇔ d u = d t v = f t ⇒ 2 ∫ 0 2 t . f ' t d t = t . f t 0 2 - ∫ 0 2 f t d t = 2 f 2 - 1 = - 5
Vậy tích phân I = 2 . - 5 = - 10 .
Chọn đáp án C.
Lấy tích phân hai vế trên đoạn [0;2] có
Tích phân từng phần có
Chọn đáp án A