Tìm x, y, z biết:
x/y=7/20; y/z=5/8 và 2x+5y-2z=100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\)
nên \(\dfrac{x}{7}=\dfrac{y}{20}\)(1)
Ta có: \(\dfrac{y}{z}=\dfrac{5}{8}\)
nên \(\dfrac{y}{5}=\dfrac{z}{8}\)
hay \(\dfrac{y}{20}=\dfrac{z}{32}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}\)
hay \(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}\)
mà 2x-5y+2z=100
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{14}=\dfrac{5y}{100}=\dfrac{2z}{64}=\dfrac{2x-5y+2z}{14-100+64}=\dfrac{100}{-22}=\dfrac{-50}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{7}=\dfrac{-50}{11}\\\dfrac{y}{20}=\dfrac{-50}{11}\\\dfrac{z}{32}=-\dfrac{50}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{350}{11}\\y=\dfrac{-1000}{11}\\z=\dfrac{-1600}{11}\end{matrix}\right.\)
Ta có: \(\dfrac{x}{y}=\dfrac{7}{20}\Rightarrow\dfrac{x}{7}=\dfrac{y}{20}\Rightarrow\dfrac{x}{14}=\dfrac{y}{40}\Rightarrow\dfrac{2x}{28}=\dfrac{5y}{200}\) \(\left(1\right)\)
Lại có: \(\dfrac{y}{z}=\dfrac{5}{8}\Rightarrow\dfrac{y}{5}=\dfrac{z}{8}\Rightarrow\dfrac{y}{40}=\dfrac{z}{64}\Rightarrow\dfrac{5y}{200}=\dfrac{2z}{128}\) \(\left(2\right)\)
Kết hợp ( 1 ) và ( 2 ) ta có: \(\dfrac{2x+5y-2z}{28+200-128}=\dfrac{100}{100}=1\)
⇒ \(\dfrac{2x}{28}=1\Rightarrow x=\dfrac{1.28}{2}=14\)
⇒ \(\dfrac{5y}{200}=1\Rightarrow y=\dfrac{1.200}{5}=40\)
⇒ \(\dfrac{2z}{128}=1\Rightarrow z=\dfrac{1.128}{2}=64\)
\(\dfrac{x}{18}=\dfrac{4}{3}\Rightarrow x=\dfrac{18.4}{3}=24\\ \dfrac{20}{y}=\dfrac{4}{3}\Rightarrow y=\dfrac{20.3}{4}=15\\ \dfrac{z}{21}=\dfrac{4}{3}\Rightarrow z=\dfrac{21.4}{3}=28\)
Ta có:
\(\dfrac{x}{18}\) = \(\dfrac{4}{3}\)
⇒ x = \(\dfrac{4}{3}\) . 18
⇒ x = 24
\(\dfrac{20}{y}\) = \(\dfrac{4}{3}\)
⇒ y = 20 : \(\dfrac{4}{3}\)
⇒ y = 15
\(\dfrac{z}{21}\) = \(\dfrac{4}{3}\)
⇒ z = \(\dfrac{4}{3}\) . 21
⇒ z = 28
⇒ x + y + z = 24 + 15 + 28 = 67
Vậy x + y + z = 67
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
Ta có: x(x+y+z)=(-5) (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)
+ Với x+y+z=3 thì:
Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)
Từ (2) và (4) \(\Rightarrow\) y=3
Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)
+ Với x+y+z=-3
Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)
Từ (2) và (5) \(\Rightarrow y=-3\)
Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)
Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)
ta có \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
=>\(\frac{x+y+z}{2x+2y+2z+1+1-2}=x+y+z\)
=>\(\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(\frac{1}{2}=x+y+z\)
\(\frac{x}{y}=\frac{7}{20}\Rightarrow x=\frac{7}{20}y\)
\(\frac{y}{z}=\frac{5}{8}\Rightarrow z=\frac{8}{5}y\)
\(2x+5y-2z=\frac{2.7}{20}y+5y-\frac{2.8}{5}y=\frac{5}{2}y=100\Leftrightarrow y=40\)
\(\Rightarrow x=\frac{7}{20}.40=14,z=\frac{8}{5}.40=64\).