K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

Ta có :

A + B = 81x20y12 + 32x10z20 

Ta thấy 81x20y12 \(\ge\)0 và  32x10z20 \(\ge\)0 nên A + B = 0 

\(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\y=z=0\end{cases}}\)( y và z bất kì khi x = 0 ; x bất kì khi y = z = 0 )

20 tháng 7 2023

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

8 tháng 12 2024

a) x=949/27
    y=755/27
    z=61/9
    các bạn xem giúp mik đúng chx ạ, mik đặt là k

20 tháng 5 2022

`a)`

`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`

`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`

`A=5x^4y^3-2y^4+22`

        `->` Bậc: `7`

`b)B-5y^4=A`

`=>B=A+5y^4`

`=>B=5x^4y^3-2y^4+22+5y^4`

`=>B=5x^4y^3+3y^4+22`

27 tháng 6 2021

Ta có: 

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)

\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)

\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)

\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)

\(=a^5-5a^3b+15ab^2-10ab^2\)

\(=a^5-5a^3b+5ab^2\)

DD
27 tháng 6 2021

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^2-4a^2b+2b^2\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

a) \(A=\left(-\dfrac{5}{4}xy^2\right).\left(\dfrac{2}{3}x^2y^3\right).\left(x^3y^4\right)\\ =\left[\left(-\dfrac{5}{4}\right).\dfrac{2}{3}.1\right].\left(x.x^2.x^3\right).\left(y^2.y^3.y^4\right)\\ =-\dfrac{5}{6}.x^6y^9\)

NV
16 tháng 8 2021

Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được

Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý

a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)

b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)