Cho các số thực a, b, c sao cho a + b + c = 3; \(a^2+b^2+c^2=29\) và abc=11. Tính \(A=a^5+b^5+c^5\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NL
Nguyễn Lê Phước Thịnh
11 tháng 4 2023
Đúng(0)
Những câu hỏi liên quan
NT
1
11 tháng 4 2023
ab+ac+bc
=1/2[(a+b+c)^2-(a^2+b^2+c^2)]
=1/2(9-29)=-10
=>a^2b^2+b^2c^2+a^2c^2=(ab+bc+ac)^2-2abc(a+b+c)
=(-10)^2-2*11*3=34
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=3*(29+10)=117
=>a^3+b^3+c^3=150
a^5+b^5+c^5
=(a^3+b^3+c^3)(a^2+b^2+c^2)-(a^3b^2+a^2c^2+a^2b^3+b^3c^2+a^2b^3+b^2c^3)
=(a^3+b^3+c^3)(a^2+b^2+c^2)-[(a^2b^2+b^2c^2+c^2a^2)(a+b+c)-abc(ab+ac+bc)]
=150*29-[34*3-11*(-10)]
=4138
TN
19 tháng 8 2017
dạng này thì chỉ có quy đồng thôi nhé mặc dù quy đồng chưa ra
4 tháng 3 2021
giả sử a\(\ge\)b
Khi đó \(\dfrac{a-b}{2}>0\)
Vì a<b+c với mọi c>0 nên \(c=\dfrac{a-b}{2}\)
Ta có: \(a\le b+\dfrac{a-b}{2}\) hay a<b ( mâu thuẫn )
=> giả sử a\(\ge\)b là sai
Vậy \(a\le b\)