K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

\(3k-1=5m-2\)

\(\Leftrightarrow3k-9=5m-10\)

\(\Leftrightarrow3\left(k-3\right)=5\left(m-2\right)\)

Do 3 và 5 nguyên tố cùng nhau \(\Rightarrow k-3⋮5\Rightarrow k=5n+3\) với \(n\in Z\)

Vậy \(A\cap B=\left\{5n+3|n\in Z\right\}\)

4 tháng 7 2017

Có :

\(3k^2+3k+1=\left(k-1\right)^3-k^3\)

\(\Rightarrow x_k=\frac{3k^2+3k+1}{k^3\left(k+1\right)^3}=\frac{\left(k-1\right)^3-k^3}{k^3\left(k+1\right)^3}=\frac{1}{k^3}-\frac{1}{\left(k+1\right)^3}\)

Áp dụng , ta được :

\(P=\frac{1}{1^3}-\frac{1}{2^3}+\frac{1}{2^3}-\frac{1}{3^3}+\frac{1}{3^3}-\frac{1}{4^3}...+\frac{1}{2018^3}-\frac{1}{2019^3}=1-\frac{1}{2009^3}\)

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

15 tháng 9 2023

a) \(2x^3-3x^2-5x=0\)

\(x\left(x+1\right)\left(2x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-1\left(TM\right)\\x=\dfrac{5}{2}\left(L\right)\end{matrix}\right.\)

\(A=\left\{-1\right\}\)

b) \(x< \left|3\right|\)\(\Leftrightarrow-3< x< 3\)

\(B=\left\{-2;-1;1;2\right\}\)

c) \(C=\left\{-3;3;6;9\right\}\)

15 tháng 9 2023

a) \(A=\left\{x\in Z|2x^3-3x^2-5x=0\right\}\)

\(2x^3-3x^2-5x=0\)

\(\Leftrightarrow x\left(2x^2-3x-5\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{5}{2}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow A=\left\{0;-1\right\}\)

b) \(B=\left\{-2;-1;0;1;2\right\}\)

c) \(C=\left\{-3;3;6;9\right\}\)

7 tháng 9 2019

Ta thấy 3k+1 là số chẵn, 6m+1 là số lẻ với \(k,m\ne0\). Với k=m=0: 3k+1=6m+1=1.

Vậy \(A\cap B=\left\{1\right\}\);A\B={3k+1|\(k\in\text{ℕ*}\)}

#Walker

10 tháng 9 2019

3.2 + 1 = 7 đâu là số chẵn '-'

19 tháng 8 2017

D=\(\left\{-2;-1;0;1;2\right\}\)

F=\(\left\{-20;-15;-10;-5;0;5;10;15;20\right\}\)

I\(\left\{0;3;6;9;12;15\right\}\)

22 tháng 3 2017

Ta có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =k\left(k+1\right)\left[\left(k-2\right)-\left(k-1\right)\right]\\ =k\left(k+1\right)\left[k-2-k+1\right]\\ =k\left(k+1\right)\left\{\left[k+\left(-k\right)\right]+\left(2+1\right)\right\}\\ =k\left(k+1\right).3\\ =3.k\left(k+1\right)\)

Vậy \(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\\ =3.k.\left(k+1\right)\)

22 tháng 3 2017

Ta có:

\(VT=k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)\)

\(=k\left(k+1\right)\left[\left(k+2\right)-\left(k-1\right)\right]\)

\(=k\left(k+1\right)\left[k+2-k+1\right]\)

\(=k\left(k+1\right)\left[\left(k-k\right)+\left(2+1\right)\right]\)

\(=k\left(k+1\right).3\)

\(=3k\left(k+1\right)\)

\(\Rightarrow VT=VP\)

Vậy với \(k\in N\)* thì ta luôn có:

\(k\left(k+1\right)\left(k+2\right)-\left(k-1\right)k\left(k+1\right)=3k\left(k+1\right)\) (Đpcm)

4 tháng 7 2019

Câu hỏi của Phạm Hữu Nam - Toán lớp 8 - Học toán với OnlineMath

Bạn tham khảo link trên!