Tính các góc của hình thang ABCD ( AB // CD ), biết rằng \(\widehat{A}=3.\widehat{D}\) ; \(\widehat{B}-\widehat{C}=30^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc A-góc D=20 độ
góc A+góc D=180 độ
=>góc A=(20+180)/2=100 độ và góc D=180-100=80 độ
góc B=2*góc C
góc B+góc C=180 độ
=>góc B=2/3*180=120 độ; góc C=180-120=60 độ
b: góc B-góc C=20 độ
góc B+góc C=180 độ
=>góc B=(180+20)/2=100 độ và góc C=80 độ
=>góc A=100+20=120 độ
=>góc D=60 độ
Câu hỏi của Phan Thị Hồng Đào - Toán lớp 8 - Học toán với OnlineMath
Từ \(\widehat{A}\) + \(\widehat{D}\) = 180o , \(\widehat{A}\) = \(3\widehat{D}\)
=> \(\widehat{A}\) = \(\left(180^o:4\right)\) . 3 = \(135^o\) ; \(\widehat{D}\) = \(45^o\)
Từ \(\widehat{B}\) + \(\widehat{C}\) \(=\) \(180^o\) và \(\widehat{B}\) \(-\) \(\widehat{C}\) \(=\) \(30^o\)
=> \(\widehat{C}\) \(=\) \(\dfrac{180^o-30^o}{2}\) \(=\) \(75^o\) , \(\widehat{B}\) = \(180^o\) \(-75^o=105^o\)
Vậy => \(\widehat{A}\) = \(135^o\) ,\(\widehat{B}\) = \(105^o\) , \(\widehat{C}\) = \(75^o\) , \(\widehat{D}\) = \(45^o\)
Ta có hình vẽ: A B C D
Vì AB//CD
nên góc A+ góc D = 180 độ (1)
góc A - góc D = 20 độ
=> góc A = 20 độ + góc D (2)
thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ
20 độ + 2 lần góc D = 180 độ
2 lần góc D = 180- 20 = 160 độ
góc D = 160/2 = 80 độ
=> góc A = góc D + 20 độ = 80+ 20= 100 độ
mà góc B = 2 lần góc C
góc B + góc C = 180 độ (trong cùng phía)
hay 2 lần góc C + góc C = 180 độ
3 lần góc C = 180 độ
góc C = 180/ 3= 60 độ
=> góc B = góc C . 2 = 60. 2= 120 độ
Vậy góc A= 100 độ
góc B = 120 độ
góc C = 60 độ
góc D = 80 độ
Bài giải:
Ta có ˆA−ˆD=A^−D^=200; ˆA+ˆD=A^+D=^ 1800
Từ ˆA−ˆD=A^−D^=200
=> ˆAA^= 200 +ˆDD^
Nên ˆA+ˆD=A^+D^= 200 + ˆDD^ +ˆDD^=200 +2 ˆDD^ =1800
=> 2ˆDD^=1600 => ˆDD^= 800
Thay ˆDD^= 800 vào ˆAA^= 200 +ˆDD^ ta được ˆAA^=200 + 800 = 1000
Lại có ˆB=2ˆCB^=2C^ ; ˆB+ˆC=B^+C^=1800
nên 2ˆC+
Ta có :AB//CD\(\Rightarrow\widehat{A}+\widehat{D}=180^o\) (do 2 góc ở vị trí trong cùng phía )
Từ \(\widehat{A}-\widehat{D}=20^o\Rightarrow\widehat{A}=20^o+\widehat{D}\) \(^{\left(1\right)}\)
Nên \(\widehat{A}+\widehat{D}=20^o+\widehat{D}+\widehat{D}=20^o+2.\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}=160^o\Rightarrow\widehat{D}=80^o\)
Thay \(\widehat{D}=80^o\) vào \(^{\left(1\right)}\) , ta được:
\(\widehat{A}=20^o+80^o=100^o\)
Lại có:\(\widehat{B}+\widehat{C}=180^o\) (do 2 góc ở vị trí trong cùng phía )
và \(\widehat{B}=2.\widehat{C}\)
nên \(2.\widehat{C}+\widehat{C}=180^o\) hay \(3.\widehat{C}=180^o\Rightarrow\widehat{C}=60^o\)
Do đó: \(\widehat{B}=2.\widehat{C}=2.60^o=120^o\)
Vậy \(\widehat{A}=100^o;\widehat{B}=120^o;\widehat{C}=60^o;\widehat{D}=80^o\)
A B C D
a)
Ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Leftrightarrow\frac{C+D}{2}+C+D=360^o\)
\(\Leftrightarrow\frac{3\left(C+D\right)}{2}=360^o\)
\(\Leftrightarrow3\left(C+D\right)=720^o\)
\(\Leftrightarrow C+D=240^o\)
\(\Leftrightarrow A+B=120\)
Vì tứ giác ABCD có AB //CD
=> ABCD là hình thang
=> A+D = 180 độ
Mà A = 40 + D
=> 40 + D + D = 180 độ
=> 2D + 40 = 180 độ
=> 2D = 140 độ
=> D = 70 độ
=> A = 180 - 70 = 110 độ
Mà B + C = 180 độ
Mà B = 2C
=> 2C + C = 180 độ
=> 3C = 180 độ
=> C = 60 độ
=> B = 180 - 60 = 120 độ
+) Vì AB // CD nên :
\(\widehat{A}+\widehat{D}=180^o\)( 2 góc trong cùng phía )
Có : \(\widehat{A}=3\widehat{D}\)
\(\Rightarrow3\widehat{D}+\widehat{D}=180^o\)
\(4\widehat{D}=180^o\)
\(\widehat{D}=\frac{180^o}{4}=45^o\)
\(\Rightarrow\widehat{A}=45^o\cdot3=135^o\)
+) Vì AB // CD ta có :
\(\widehat{B}+\widehat{C}=180^o\)( hai góc trong cùng phía )
Mà \(\widehat{B}-\widehat{C}=30^o\)
\(\Rightarrow\widehat{B}=\left(180+30\right)\div2=105^o\)
\(\Rightarrow\widehat{C}=105^o-30^o=75^o\)
Theo t/c hình thang ta luôn có : \(\widehat{A}+\widehat{D}=180^0\) và \(\widehat{B}+\widehat{C}=180^0\)
Kết hợp với đề bài ta được :
\(\left\{{}\begin{matrix}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=3\widehat{D}\\3\widehat{D}+\widehat{D}=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=3\widehat{D}\\4\widehat{D}=180\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{A}=135^0\\\widehat{D}=45^0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\widehat{B}+\widehat{C}=180\\\widehat{B}-\widehat{C}=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}+\widehat{C}=180\\2\widehat{C}=150\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=105^0\\\widehat{C}=75^0\end{matrix}\right.\)