Bài 1)Cho ΔABC vuông ở A,đường cao AH.Tính chu vi ΔABC,biết AH =14cm; \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)
=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)
=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)
ΔABH vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(AB^2=3,2^2+2,4^2=16\)
=>\(AB=\sqrt{16}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-4^2=9\)
=>\(AC=\sqrt{9}=3\left(cm\right)\)
Chu vi tam giác ABC là:
3+4+5=12(cm)
Bài 2:
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{BH}{CH}=\dfrac{1}{9}\)
A B C H
Xét tam giác ABC vuông tại A, đường cao AH
Ta có : \(\frac{HB}{HC}=\frac{1}{4}\Rightarrow HB=\frac{1}{4}HC\)
* Áp dụng hệ thức : \(AH^2=BH.HC=\left(\frac{1}{4}HC\right)HC=\frac{1}{4}HC^2\)
\(\Rightarrow196=\frac{1}{4}HC^2\Leftrightarrow HC^2=784\Leftrightarrow HC=28\)cm
=> HB = 28/4 = 7 cm
=> BC = HB + HC = 28 + 7 = 35 cm
Áp dụng định lí Pytago tam giác AHB vuông tại H
\(AB^2=BH^2+AH^2=49+196=245\Rightarrow AB=7\sqrt{5}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\frac{AH.BC}{AB}=14\sqrt{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=35+21\sqrt{5}\)cm
a) Xét ΔABC vuông tại A và ΔHCA vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHCA(g-g)
b) Ta có: ΔABC\(\sim\)ΔHCA(cmt)
nên \(\dfrac{AB}{HC}=\dfrac{AC}{AH}=\dfrac{BC}{CA}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{HC}{AH}=1\)
\(\Leftrightarrow HC=AH=2\left(cm\right)\)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC vuông cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
Suy ra: HB=HC(hai cạnh tương ứng)
mà HC=2cm(cmt)
nên HB=2cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=8\)
hay \(AB=2\sqrt{2}\left(cm\right)\)
A B C H
a.Xét tam giác ABC và tam giác HBA có:
^B chung
^BAC = ^BHA = 90
=> tam giác ABC ~ tam giác HBA (g.g)
b. Áp dụng đl Pytago cho tam giác ABC vuông tại A:
BC2=AB2+AC2=82+152=289
=>BC=17cm
c.tam giác ABC ~ tam giác HBA
=> AB/HB=BC/BA
=>HB=AB2/BC=82/17=64/17 cm
=>HC=BC-HB=225/17
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)