K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2017

Bài 1:
x2 + 2xy + 4y2 = ( x + 2y )2
\(\Rightarrow\)Đúng

Bài 2
( a + b )2 = ( a - b )2 + 4ab
Xét VP : ( a - b)2 - 4ab = a2 - 2ab + b2 + 4ab
= a2 + 2ab + b2 = ( a + b )2
= VT
\(\Rightarrow\)đpcm
( a - b)2 = ( a + b )2 - 4ab
Xét VP: a2 + 2ab + b2 -4ab
= a2 - 2ab + b2 = ( a - b)2
= VT
\(\Rightarrow\)đpcm
Áp dụng:
a) Ta có: ( a - b)2 = ( a + b)2 - 4ab
Thay a + b = 7 ; ab = 12
\(\Rightarrow\)72 - 4.12 = 49 - 48 = 1
b) Ta có : ( a + b )2 = ( a - b)2 + 4ab
Thay a - b = 20 ; ab = 3
\(\Rightarrow\) 202 + 4.3 = 400 + 12 = 412

Bài 3:
Ta có: 49x2 - 70x + 25
= ( 7x)2 - 2.7x.5 + 52
= (7x - 5 )2
a) Thay x = 5
\(\Rightarrow\) ( 7.5 - 5)2 = 302 = 900
b) Thay x = 7
\(\Rightarrow\)( 7 . \(\dfrac{1}{7}\)- 5 )2 = 16

6 tháng 9 2017

Bài 4: Tính
a) ( a + b + c )2
= [ ( a + b ) + c ] 2
= ( a+ b)2 + 2.( a + b).c + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2

b) ( a + b - c)2
= [ a + ( b - c)]2
= a2 + 2.a.( b - c) + ( b - c )2
= a2 + 2ab - 2ac + b2 - 2bc + c2

c) ( a - b - c)2
= [( a - b)-c ]2
= ( a- b)2 - 2. ( a - b ).c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2

Bài giải:

Nhận xét sự đúng, sai:

Ta có: (x + 2y)2 = x2 + 2 . x . 2y + 4y2

= x2 + 4xy + 4y2

Nên kết quả x2 + 2xy + 4y2 = (x + 2y)2 sai.

1 tháng 10 2020

Bài giải:

Ta có:

(x+2y)2 = x2+2.x.2y+(2y)2

= x2+4xy+4y2

Vậy nên kết quả x2+2xy+4y2 =(x+2y)2 là sai

29 tháng 6 2018

Kết quả trên sai.

Ta có: (x + 2y)2 = x2 + 2.x.2y + 4y2 = x2 + 4xy + 4y2 ≠ x2 + 2xy + 4y2.

18 tháng 10 2021

1.A

2.C

3.B

4.C

15 tháng 12 2021

a

c

b

c

31 tháng 8 2017

1. Sai
2.
a) 9x2 - 6x + 1
= ( 3x)2 - 2.3x.1 + 12
= ( 3x - 1 )2
b) ( 2x + 3y )2 + 2x ( 2x + 3y ) +1
= ( 2x + 3y + 1 )2

31 tháng 8 2017

mơn bạn nhiều nha

4 tháng 8 2017

xin loi bn cau nay minh ko biet vi minh moi lp 3 thoi

4 tháng 8 2017

Ta có : x2 + 2xy + 2y2 + 2y + 1

= (x2 + 2xy + y2) + (y2 + 2y + 1)

= (x + y)2 + (y + 1)2

Vì : (x + y)2 \(\ge0\forall x\) ;  (y + 1)2 \(\ge0\forall x\)

Nên : (x + y)2 + (y + 1)\(\ge0\forall x\)

Vậy  (x + y)2 + (y + 1)không âm 

15 tháng 8 2020

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

15 tháng 8 2020

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

24 tháng 7 2019

\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)

\(=\left(a+c+b\right)\left(a+c-b\right)\)

\(=\left(a+c\right)^2-b^2\)

\(=a^2+2ac+c^2-b^2=VP\)

\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)

\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)

\(c,VT=x^3-1-x^3-1=-2=VP\)

\(d,VT=8x^3+1-8x^3+1=2=VP\)

\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)

\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)

\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)

( bn kiểm tra lại đề nhé)