Cho tam giác ABC,biết \(\widehat{A}+\widehat{B}=120^o;\widehat{A}-\widehat{B}=30^o\)
a) So sánh các cạnh của tam giác đó ?
b) Tia phân giác của \(\widehat{A}\)cắt BC tại,hãy so sánh độ dài DB và CD ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.
Vì AD là đường phân giác của góc BAC, nên ta có:
∠DAB = ∠DAC (1)
Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:
∠CBA = ∠CBE (2)
Từ (1) và (2), ta có:
∠DAB + ∠CBA = ∠DAC + ∠CBE
∠DAB + ∠CBA = ∠BAC + ∠ABC
∠DAB + ∠CBA = ∠ABC + ∠BAC
Do đó, góc ADC bằng góc BEC.
Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:
∠DAB = ∠DAC
∠EBA = ∠EBC
Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:
∠DAC + ∠ADC = ∠DAB + ∠ABC
∠DAB + ∠ABC = ∠DAC + ∠ADC
Từ đây, suy ra ∠A = ∠B.
Vậy, điều phải chứng minh a) đã được chứng minh.
b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.
Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:
∠ADB + ∠BEC = ∠BEC + ∠BEC
∠ADB + ∠BEC = 2∠BEC
∠ADB = ∠BEC
Do đó, góc ADB bằng góc BEC.
Tiếp theo, ta có:
∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)
∠ADB + ∠B + ∠BEC = 180°
∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)
2∠BEC + ∠B = 180°
2∠BEC = 180° - ∠B
∠BEC = (180° - ∠B) / 2
∠BEC = 90° - ∠B/2
∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)
∠A/2 + ∠B/2 + ∠C = 90°
∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2
∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2
∠A + ∠C = 90° - ∠A/2
∠A + ∠C + ∠A/2 = 90°
2∠A + ∠C = 180°
∠A + ∠C = 180° - ∠A
∠A + ∠C = ∠B
∠A + ∠B + ∠C = 180°
∠A + ∠B + ∠C = 120° + 60°
∠A + ∠B + ∠C = 180°
Do đó, ∠A + ∠B = 120°.
Vậy, điều phải chứng minh b) đã được chứng minh.
a)
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
a) Ta cần tính cạnh BC và hai góc \(\widehat B,\widehat C.\)
Áp dụng định lí cosin, ta có:
\(\begin{array}{l}B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\\ \Leftrightarrow B{C^2} = {14^2} + {23^2} - 2.14.23.\cos {125^o}\\ \Rightarrow BC \approx 33\end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{33}}{{\sin {{125}^o}}} = \frac{{23}}{{\sin B}} = \frac{{14}}{{\sin C}}\\ \Rightarrow \sin B = \frac{{23.\sin {{125}^o}}}{{33}} \approx 0,57\\ \Rightarrow \widehat B \approx {35^o} \Rightarrow \widehat C \approx {20^o}\end{array}\)
b) Ta cần tính góc A và hai cạnh AB, AC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {64^o} - {38^o} = {78^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{22}}{{\sin {{78}^o}}} = \frac{{AC}}{{\sin {{64}^o}}} = \frac{{AB}}{{\sin {{38}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}AC = \sin {64^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 20,22\\AB = \sin {38^o}.\frac{{22}}{{\sin {{78}^o}}} \approx 13,85\end{array} \right.\end{array}\)
c) Ta cần tính góc A và hai cạnh AB, BC.
Ta có: \(\widehat A = {180^o} - \widehat B - \widehat C = {180^o} - {120^o} - {28^o} = {32^o}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Leftrightarrow \frac{{BC}}{{\sin {{32}^o}}} = \frac{{22}}{{\sin {{120}^o}}} = \frac{{AB}}{{\sin {{28}^o}}}\\ \Rightarrow \left\{ \begin{array}{l}BC = \sin {32^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 13,5\\AB = \sin {28^o}.\frac{{22}}{{\sin {{120}^o}}} \approx 12\end{array} \right.\end{array}\)
d) Ta cần tính số đo ba góc \(\widehat A,\widehat B,\widehat C\)
Áp dụng hệ quả của định lí cosin, ta có:
\(\begin{array}{l}\cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}};\cos B = \frac{{B{C^2} + A{B^2} - A{C^2}}}{{2.BC.BA}}\\ \Rightarrow \cos A = \frac{{{{32}^2} + {{23}^2} - {{44}^2}}}{{2.32.23}} = \frac{{ - 383}}{{1472}};\cos B = \frac{{{{44}^2} + {{23}^2} - {{32}^2}}}{{2.44.23}} = \frac{{131}}{{184}}\\ \Rightarrow \widehat A \approx {105^o},\widehat B = {44^o}36'\\ \Rightarrow \widehat C = {30^o}24'\end{array}\)
\(\widehat{B}=180^o-\left(40^o+120^o\right)=20^o\).
\(AH=AB.sinB=35.sin20^o\cong12cm.\)
\(\widehat{HCA}=180^o-120^o=60^o\).
\(AH=AC.sin60^o\Rightarrow AC=\dfrac{AH}{sin60}=\dfrac{12}{\dfrac{\sqrt{3}}{2}}=8\sqrt{3}\).
Áp dụng định lý Cô-sin:
\(BC=\sqrt{AB^2+AC^2-2.AB.AC.sinA}\)\(=\sqrt{35^2+\left(8\sqrt{3}\right)^2-2.35.8\sqrt{3}.cos40^o}\cong26cm\).
Vậy \(a=26cm;b=8\sqrt{3}cm,\)\(\widehat{B}=20^o\).
a) Áp dụng định lí cosin, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc.\cos A\\ \Leftrightarrow {a^2} = {8^2} + {5^2} - 2.8.5.\cos {120^ \circ } = 129\\ \Rightarrow a = \sqrt {129} \end{array}\)
Áp dụng định lí sin, ta có:
\(\begin{array}{l}\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} \Rightarrow \frac{{\sqrt {129} }}{{\sin {{120}^ \circ }}} = \frac{8}{{\sin B}} = \frac{5}{{\sin C}}\\ \Rightarrow \left\{ \begin{array}{l}\sin B = \frac{{8.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,61\\\sin C = \frac{{5.\sin {{120}^ \circ }}}{{\sqrt {129} }} \approx 0,38\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat B \approx 37,{59^ \circ }\\\widehat C \approx 22,{41^ \circ }\end{array} \right.\end{array}\)
b) Diện tích tam giác ABC là: \(S = \frac{1}{2}bc.\sin A = \frac{1}{2}.8.5.\sin {120^ \circ } = 10\sqrt 3 \)
c)
+) Theo định lí sin, ta có: \(R = \frac{a}{{2\sin A}} = \frac{{\sqrt {129} }}{{2\sin {{120}^ \circ }}} = \sqrt {43} \)
+) Đường cao AH của tam giác bằng: \(AH = \frac{{2S}}{a} = \frac{{2.10\sqrt 3 }}{{\sqrt {129} }} = \frac{{20\sqrt {43} }}{{43}}\)