- \(\frac{ }{\frac{x-3}{4}=\frac{y}{15};\frac{y}{10}=\frac{z+7}{7};3x-5z+2y=23}\)
- Cho hình vẽ,biết FG//IK,\(\widehat{FGH=80^0}\)\(\widehat{HIK=32^0}\).Tính số đó của\(\widehat{FHI}\)
- Cho biết \(\frac{a}{b}=\frac{c}{d}\).Chứng tỏ rằng:\(\frac{a-b}{b}\)=\(\frac{c-d}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(\frac{-2}{5}+\frac{6}{5}.\left(y-\frac{2}{3}\right)=\frac{-4}{15}\)
\(\Rightarrow\frac{6}{5}.\left(y-\frac{2}{3}\right)=\frac{-4}{15}-\frac{-2}{15}\)
\(\Rightarrow\frac{6}{5}.\left(y-\frac{2}{3}=\right)\frac{-2}{5}\)
\(\Rightarrow y-\frac{2}{3}=\frac{-2}{5}:\frac{6}{5}=\frac{-1}{3}\)
\(\Rightarrow y=\frac{-1}{3}+\frac{2}{3}=\frac{1}{3}\)
Vậy x = \(\frac{1}{3}\)
b) Ta có: \(\frac{-2}{5}+\frac{2}{3}x+\frac{1}{6}x=\frac{-4}{15}\)
\(\Rightarrow\frac{-2}{5}+x.\left(\frac{2}{3}+\frac{1}{6}\right)=\frac{-4}{15}\)
\(\Rightarrow x.\frac{5}{6}=\frac{-4}{15}-\frac{-2}{15}\)
\(x.\frac{5}{6}=\frac{-2}{15}\)
\(\Rightarrow x=\frac{-2}{15}:\frac{5}{6}=\frac{-4}{25}\)
Vậy x = \(\frac{-4}{25}\)
c) Ta có: \(\frac{3}{2}x+\frac{-2}{5}-\frac{2}{3}.x=\frac{-4}{15}\)
\(\Rightarrow\frac{3}{2}x-\frac{2}{3}x+\frac{-2}{5}=\frac{-4}{15}\)
\(\Rightarrow x.\left(\frac{3}{2}-\frac{2}{4}\right)=\frac{-4}{15}-\frac{-2}{15}\)
\(\Rightarrow x.\frac{5}{6}=\frac{-2}{15}\)
\(\Rightarrow x=\frac{-2}{15}:\frac{5}{6}=\frac{-4}{25}\)
Vậy x = \(\frac{-4}{25}\)
Ủng hộ tớ nha m.n
a) Ta có:
\(\begin{array}{l}\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{3}.\frac{1}{5} = \frac{y}{4}.\frac{1}{5} \Rightarrow \frac{x}{{15}} = \frac{y}{{20}};\\\frac{y}{5} = \frac{z}{6} \Rightarrow \frac{y}{5}.\frac{1}{4} = \frac{z}{6}.\frac{1}{4} \Rightarrow \frac{y}{{20}} = \frac{z}{{24}}\end{array}\)
Vậy \(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}}\) (đpcm)
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{{15}} = \frac{y}{{20}} = \frac{z}{{24}} = \frac{{x - y + z}}{{15 - 20 + 24}} = \frac{{ - 76}}{{19}} = - 4\)
Vậy x = 15 . (-4) = -60; y = 20. (-4) = -80; z = 24 . (-4) = -96
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !
a)\(x-\frac{3}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{3}{5}+\frac{3}{5}=\frac{6}{5}\)
b)\(|x|-\frac{4}{5}=\frac{2}{3}\\ \Rightarrow|x|=\frac{2}{3}+\frac{4}{5}=\frac{22}{15}\\ \Rightarrow|x|=\frac{22}{15}\\ \Rightarrow x=\frac{22}{15}\)
c)\(\frac{x}{-5}=\frac{24}{15}\\ \Rightarrow x=\frac{-5\cdot24}{15}=-8\)
d)\(\frac{x}{4}=\frac{y}{5} và x-y=21\)
Theo tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x-y}{4-5}=\frac{21}{-1}=-21\)
Do đó :
\(\frac{x}{4}=-21\Rightarrow x=-84\)
\(\frac{y}{5}=-21\Rightarrow y=-105\)
\(x-\frac{3}{5}=\frac{3}{5}\)
\(x=\frac{3}{5}+\frac{3}{5}\)
\(x=\frac{6}{5}\)
\(\left|x\right|-\frac{4}{5}=\frac{2}{5}\)
\(\left|x\right|=\frac{2}{5}+\frac{4}{5}\)
\(\left|x\right|=\frac{6}{5}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{6}{5}\\x=-\frac{6}{5}\end{cases}}\)
\(\frac{x}{-5}=\frac{24}{15}\)
\(\Rightarrow x.15=\left(-5\right).24\)
\(\Rightarrow x.15=-120\)
\(\Rightarrow x=-120:15\)
\(\Rightarrow x=-8\)
\(-\frac{12}{15}=-\frac{x}{3}=-\frac{4}{y}=-\frac{z}{5}\)
\(\frac{-12}{15}=-\frac{x}{3}\)
\(\Leftrightarrow-x.15=-12.3\)
\(\Leftrightarrow-x.15=-36\)
\(\Leftrightarrow x=\frac{12}{5}\)
\(-\frac{12}{15}=-\frac{4}{y}\)
\(\Leftrightarrow-12.y=15.\left(-4\right)\)
\(\Leftrightarrow-12y=-60\)
\(\Leftrightarrow y=5\)
\(-\frac{12}{15}=\frac{z}{5}\)
\(\Leftrightarrow z.15=-12.5\)
\(\Leftrightarrow z.15=-60\)
\(\Leftrightarrow z=-4\)
a) \(\frac{x}{y}.\frac{3}{7}=\frac{4}{9}\)
\(\frac{x}{y}=\frac{4}{9}:\frac{3}{7}\)
\(\frac{x}{y}=\frac{4}{9}.\frac{7}{3}\)
\(\frac{x}{y}=\frac{28}{27}\)