Nếu \(\frac{2x-7}{4x-9}=\frac{7}{9};\frac{3y-6}{4z-8}=\frac{3}{4}\)vàx,y,z khác 0 thì \(\frac{x}{y}+\frac{y}{z}=...\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{10-4x^2}{\left(2x-3\right)\left(2x+3\right)}\)
\(\frac{\left(x-1\right)\left(2x-3\right)}{\left(2x+3\right)\left(2x-3\right)}-\frac{\left(3x+7\right)\left(2x+3\right)}{\left(2x+3\right)\left(2x-3\right)}=\frac{10-4x^2}{\left(2x+3\right)\left(2x-3\right)}\)
2x2-3x-2x+3-(6x2+9x+14x+21)=10-4x2
2x2-3x-2x+3-6x2-9x-14x-21=10-4x2
2x2-3x-2x+3-6x2-9x-14x-21-10+4x2=0
2x2-6x2+4x2-3x-2x-9x-14x+3-21-10=0
-28x-28=0
-28x=28
x=28:(-28)
x=-1
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-2\left(2x^2-5\right)}{4x^2-9}\)
\(\frac{x-1}{2x+3}-\frac{3x+7}{2x-3}=\frac{-4x^2+10}{\left(2x+3\right)\left(2x-3\right)}\)
\(-4x^2-28x-18=-4x^2+10\)
\(-4x^2-28x-18+4x^2-10=0\)
\(-28x-28=0\)
\(-28x=28\)
\(x=-1\)
\(\frac{x^2-36}{2x+10}\cdot\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2x+10}\cdot\frac{3}{6-x}=-\frac{3\left(x+6\right)}{2x+10}=-\frac{3x+18}{2x+10}\)
\(\frac{x^2-4}{x^2-9}\cdot\frac{3x+9}{x+2}=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{3\left(x+3\right)}{x+2}=\frac{3\left(x-2\right)}{x-3}\)
\(\frac{x^3-8}{5x+20}\cdot\frac{x^2+4x}{x^2+2x+4}=\frac{\left(x-2\right)\left(x^2+2x+4\right)}{5\left(x+4\right)}\cdot\frac{x\left(x+4\right)}{x^2+2x+4}=\frac{x\left(x-2\right)}{5}\)
\(\frac{4x+12}{\left(x+4\right)^2}:\frac{3x+9}{x+4}=\frac{4\left(x+3\right)}{\left(x+4\right)^2}\cdot\frac{x+4}{3\left(x+3\right)}=\frac{4}{3\left(x+4\right)}\)
\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)
\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)
\(< =>12x-20-14x-21=0\)
\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)
\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)
\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)
\(< =>8x+12+4x-2x+3=0\)
\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7