Tìm các số a, b, c biết rằng :
\(\dfrac{a}{2}=\dfrac{b}{3};\dfrac{b}{5}=\dfrac{c}{4}\) và \(a-b+c=-49\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a-b-c}{8-12-15}=\dfrac{28}{-19}=\dfrac{-28}{19}\)
Do đó: \(\left\{{}\begin{matrix}a=\dfrac{-224}{19}\\b=\dfrac{-336}{19}\\c=\dfrac{-420}{19}\end{matrix}\right.\)
tham khảo!!
https://lazi.vn/edu/exercise/tim-cac-so-a-b-c-biet-rang-a-2-b-3-c-4-va-a-2-b-2-2c-2-108
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+2b-3c}{2+2\cdot3-3\cdot4}=\dfrac{-20}{-4}=5\\ \Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=5\\\dfrac{b}{3}=5\\\dfrac{c}{4}=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10\\b=15\\c=20\end{matrix}\right.\)
`a/2 = b/3 = c/4`
`=> a/2 = (2b)/6 = (3c)/12`
mà `a+2b-3c=-20`
áp dụng tính chất dãy tỉ số bằng nhau ta có
` a/2 = (2b)/6 = (3c)/12 = (a+2b-3c)/(2+6-12)=(-20)/-4 = 5`
` => a=5xx2=10`
`b=5xx3=15`
`c=5xx4=20`
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a) Ta có: \(\dfrac{3+x}{7+y}=\dfrac{3}{7}\)
\(\Leftrightarrow\dfrac{x+3}{3}=\dfrac{y+7}{7}\)
mà x+y=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+3}{3}=\dfrac{y+7}{7}=\dfrac{x+y+3+7}{3+7}=\dfrac{20+10}{10}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x+3}{10}=3\\\dfrac{y+7}{7}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=30\\y+7=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=14\end{matrix}\right.\)
Vậy: x=27; y=14
Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)
Aps dụng tính chất dãy tỉ số bằn nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
=>\(\dfrac{x}{2}=1=>x=2\)
\(\dfrac{y}{3}=1=>y=3\)
\(\dfrac{z}{5}=1=>z=5\)
Vậy x=2, y=3, z=5
Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Leftrightarrow x=2;y=3;z=5\)
a: Gọi phân số cần tìm có dạng là \(\dfrac{a}{b}\left(b\ne0\right)\)
Theo đề, ta có: \(\dfrac{1}{3}< \dfrac{a}{b}< \dfrac{1}{2}\)
=>\(0,\left(3\right)< \dfrac{a}{b}< 0,5\)
=>\(\dfrac{a}{b}=0,4;\dfrac{a}{b}=0,42\)
=>\(\dfrac{a}{b}=\dfrac{2}{5};\dfrac{a}{b}=\dfrac{21}{25}\)
Vậy: Hai phân số cần tìm là \(\dfrac{2}{5};\dfrac{21}{25}\)
b: a/b<1
=>a<b
=>\(a\cdot c< b\cdot c\)
=>\(a\cdot c+ab< b\cdot c+ab\)
=>\(a\left(c+b\right)< b\left(a+c\right)\)
=>\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{15};\dfrac{b}{5}=\dfrac{c}{4}\Rightarrow\dfrac{b}{15}=\dfrac{c}{12}.\)
Do đó : \(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-49}{7}=-7.\)
\(\Rightarrow a=-70;b=-105;c=-84.\)
Theo đề bài: \(\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{5}=\dfrac{c}{4}\)
\(\Rightarrow\) \(\dfrac{a}{10}=\dfrac{b}{15}\); \(\dfrac{b}{15}=\dfrac{c}{12}\)
\(\Rightarrow\) \(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-49}{7}=-7\)
\(\Rightarrow\dfrac{a}{10}=-7\Rightarrow a=-70\)
và \(\dfrac{b}{15}=-7\Rightarrow b=-105\)
và \(\dfrac{c}{12}=-7\Rightarrow c=-84\)
Vậy \(a=-70\); \(b=-105\); \(c=-84\)