VỚI \(0\)ĐỘ\(< \alpha< 45\)ĐỘ
\(\sin2\alpha=2\sin\alpha\cos\alpha;\cos^2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử tam giác ABC vuông tại A, \(\widehat{B}=\alpha=45^o\), kẻ trung tuyến AM
do \(\alpha< 45^o\Rightarrow2\alpha< 90^o\)và \(\widehat{C}=90^o-\alpha>45^o>\widehat{B}\)
tam giác ABC vuông tại A, trung tuyến AM nên \(MA=MB=MC=\frac{BC}{2};\widehat{AMC}=2\alpha\)(theo tính chất góc ngoài)
hạ HA _|_ BC trong tam giác AHM vuông tại M ta có \(\sin\alpha=\frac{AH}{AM}=\frac{2AH}{BC}\left(1\right)\)
trong tam giác AHB vuông tại H ta có \(\sin\alpha=\frac{AH}{AB}\left(2\right)\)
trong tam giác ABC vuông tại A ta có \(\sin\alpha=\frac{AB}{BC}\left(3\right)\)
từ (1) (2) và (3) => \(\sin2\alpha=2\cdot\frac{AH}{AB}\cdot\frac{AB}{BC}=2\sin\alpha\cos\alpha\)
tam giác AHM vuông tại H ta có \(\cos2\alpha=\frac{HM}{AM}=\frac{2HM}{BC}\left(4\right)\)
\(\cos^2\alpha-\sin^2\alpha=\frac{AB^2}{BC^2}-\frac{AC^2}{BC^2}=\frac{HB\cdot BC-HC\cdot BC}{BC^2}=\frac{HB-HC}{BC}=\frac{2HM}{BC}\left(5\right)\)
từ (4) và (5) suy ra \(\sin2\alpha=\cos^2\alpha-\sin^2\alpha\)
vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-