\(Cho\) \(P=\frac{1}{2}+\sqrt{x}\) \(;\) \(Q=7-2\sqrt{x-1}\)
a) Tìm \(GTNN\)của \(P\) b) Tìm \(GTLN\)của \(Q\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}-1\le x\le1\\x\ne0\end{matrix}\right.\)
\(A=\frac{\sqrt{1+x}}{\sqrt{1+x}-\sqrt{1-x}}+\frac{\sqrt{1-x}^2}{\sqrt{1-x}\left(\sqrt{1+x}-\sqrt{1-x}\right)}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1-x}}-\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\)
\(=\frac{1+x+1-x+2\sqrt{1-x^2}-\left(1+x+1-x-2\sqrt{1-x^2}\right)}{2x}\)
\(=\frac{2\sqrt{1-x^2}}{x}\)
\(\sqrt{1-x^2}=\sqrt{1-\frac{4+2\sqrt{3}}{8}}=\sqrt{\frac{4-2\sqrt{3}}{8}}=\frac{\sqrt{3}-1}{2\sqrt{2}}\)
\(\Rightarrow A=\frac{\sqrt{3}-1}{\sqrt{2}}.\frac{2\sqrt{2}}{\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)^2}{2}=4-2\sqrt{3}\)