Cho a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\);\(a+b+c=23\);\(\sqrt{abc}=3\)
Tính giá trị biếu thức A=\(\frac{1}{\sqrt{ab}+\sqrt{c}-6}+\frac{1}{\sqrt{bc}+\sqrt{a}-6}+\frac{1}{\sqrt{ca}+\sqrt{b}-6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TK: Cho các số thực dương a, b, c thỏa mãn a + b+ c = 3. Chứng minh rằng: \(\sqrt{2a^2+\frac{7}{b^2}}+\sqrt{2b^2+\frac{7}{... - Hoc24
Câu hỏi của hoàng thị huyền trang - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
Từ giả thiết: \(\sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}\)
Xét hạng tử: \(\frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}\)
Từ đó: \(N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}\)
\(=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}\)
Mặt khác: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13\)
Suy ra: \(N=\frac{4}{9-13}=-1\). Kết luận: N = -1.
Từ giả thiết: \sqrt{a}+\sqrt{b}+\sqrt{c}=7\Leftrightarrow\sqrt{c}=7-\sqrt{a}-\sqrt{b}a+b+c=7⇔c=7−a−b
Xét hạng tử: \frac{1}{\sqrt{ab}+\sqrt{c}-6}=\frac{1}{\sqrt{ab}+7-\sqrt{a}-\sqrt{b}-6}=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}ab+c−61=ab+7−a−b−61=(a−1)(b−1)1
Từ đó: N=\frac{1}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)}+\frac{1}{\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}+\frac{1}{\left(\sqrt{c}-1\right)\left(\sqrt{a}-1\right)}N=(a−1)(b−1)1+(b−1)(c−1)1+(c−1)(a−1)1
=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\left(\sqrt{c}-1\right)}=\frac{\sqrt{a}+\sqrt{b}+\sqrt{c}-3}{\sqrt{abc}-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)-1}=(a−1)(b−1)(c−1)a+b+c−3=abc−(ab+bc+ca)+(a+b+c)−1a+b+c−3
=\frac{7-3}{3-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+7-1}=\frac{4}{9-\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}=3−(ab+bc+ca)+7−17−3=9−(ab+bc+ca)4
Mặt khác: \sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=13ab+bc+ca=2(a+b+c)2−(a+b+c)=13
Suy ra: N=\frac{4}{9-13}=-1N=9−134=−1. Kết luận: N = -1.
Đặt \(x=\sqrt{a};y=\sqrt{b};z=\sqrt{c}\) \(\Rightarrow xyz=1\) (x;y;z > 0 do a;b;c>0)
Cần c/m : \(VT=\dfrac{y^2+z^2}{x}+\dfrac{x^2+z^2}{y}+\dfrac{x^2+y^2}{z}\ge x+y+z+3=VP\)
Dễ dàng c/m : VT \(\ge2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\) (1)
Thấy : \(\dfrac{xy}{z}+\dfrac{xz}{y}\ge2x\) . CMTT : \(\dfrac{xz}{y}+\dfrac{yz}{x}\ge2z;\dfrac{yz}{x}+\dfrac{xy}{z}\ge2y\)
Suy ra : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge x+y+z\)
Có : \(\dfrac{xy}{z}+\dfrac{xz}{y}+\dfrac{yz}{x}\ge3\sqrt[3]{xyz}=3\)
Suy ra : \(2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{xz}{y}\right)\ge x+y+z+3\left(2\right)\)
Từ (1) ; (2) suy ra : \(VT\ge VP\)
" = " \(\Leftrightarrow x=y=z=1\Leftrightarrow a=b=c=1\)
\(M\ge\dfrac{\sqrt{\left(\sqrt{a}+\sqrt{b}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{b}+\sqrt{c}\right)^2}}{2}+\dfrac{\sqrt{\left(\sqrt{c}+\sqrt{a}\right)^2}}{2}\)
\(M\ge\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\Rightarrow\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=3\\0\le x;y;z\le\sqrt{3}\end{matrix}\right.\)
\(P=x^2y+y^2z+z^2x-xyz\)
Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)
\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Leftrightarrow x^2+yz\le xy+xz\)
\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)
\(\Rightarrow P\le xy^2+z^2x+xyz-xyz=x\left(y^2+z^2\right)=x\left(3-x^2\right)\)
\(\Rightarrow P\le2-\left(x^3-3x+2\right)=2-\left(x-1\right)^2\left(x+2\right)\le2\)
\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(1;0;2\right)\) và một vài hoán vị