Tính tổng của hai đa thức sau bằng hai cách:
\(P(x) = 2{x^3} + \dfrac{3}{2}{x^2} + 5x - 2\);
\(Q(x) = - 8{x^3} + 4{x^2} + 6 + 3x\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)
\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)
-x^3 -5x + 2 _ 3x + 8 x^3 -8x - 6
a: \(P\left(x\right)=x^4+x^3-x^2+2x-5\)
\(Q\left(x\right)=x^4+5x^3-3x^2-2x-5\)
b: \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=-4x^3+2x^2+4x\)
c: Bậc của H(x) là 3
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
a) Các đơn thức đồng dạng trong các đơn thức sau là: \(5x^2yz;-2x^2yz\) ; \(x^2yz\) ; \(0,2x^2yz\)
b) \(M\left(x\right)=3x^2+5x^3-x^2+x-3x-4\)
\(M\left(x\right)=(3x^2-x^2)+5x^3+(x-3x)-4\)
\(M\left(x\right)=2x^2+5x^3-2x-4\)
\(M\left(x\right)=5x^3+2x^2-2x-4\)
c) \(P+Q=\left(x^3x+3\right)+\left(2x^3+3x^2+x-1\right)\)
\(P+Q=x^3x+3+2x^3+3x^2+x-1\)
\(P+Q=\left(x^3+2x^3\right)+\left(x+x\right)+\left(3-1\right)+3x^2\)
\(P+Q=3x^3+2x+2+3x^2\)
a, \(P\left(x\right)=5x^3-3x+7-x\)
\(=5x^3-4x+7\)
\(Q\left(x\right)=-5x^3+2x-3+2x-x^2-2\)
\(=-5x^3-x^2+4x-5\)
Ta có \(P\left(x\right)+Q\left(x\right)=-x^2+2\)
\(P\left(x\right)-Q\left(x\right)=10x^3+x^2-8x+12\)
b, \(P\left(x\right)+Q\left(x\right)=0\)
\(\Leftrightarrow-x^2+2=0\)
\(\Leftrightarrow-x^2=-2\)
\(\Leftrightarrow x^2=2=\left(\pm\sqrt{2}\right)^2\)
\(\Rightarrow x=\pm\sqrt{2}\)
Vậy \(x=\pm\sqrt{2}\)
P(x) = 5x3 - 3x + 7 - x
= 5x3 - 4x + 7
Q(x) = -5x3 + 2x - 3 + 2x - x2 - 2
= -5x3 - x2 + 4x - 5
P(x) + Q(x) = ( 5x3 - 4x + 7 ) + ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 - 5x3 - x2 + 4x - 5
= -x2 + 2
P(x) - Q(x) = ( 5x3 - 4x + 7 ) - ( -5x3 - x2 + 4x - 5 )
= 5x3 - 4x + 7 + 5x3 + x2 - 4x + 5
= 10x3 + x2 - 8x + 12
Đặt H(x) = P(x) + Q(x)
=> H(x) = -x2 + 2
H(x) = 0 <=> -x2 + 2 = 0
<=> -x2 = -2
<=> x2 = 2
<=> x = \(\pm\sqrt{2}\)
Vậy nghiệm của đa thức là \(\pm\sqrt{2}\)
Theo cột dọc:
Theo hàng ngang:
\(\begin{array}{l}P(x) + Q(x) = 2{x^3} + \dfrac{3}{2}{x^2} + 5x - 2 + ( - 8){x^3} + 4{x^2} + 3x + 6\\ = (2 - 8){x^3} + (\dfrac{3}{2} + 4){x^2} + (5 + 3)x + ( - 2 + 6)\\ = - 6{x^3} + \dfrac{{11}}{2}{x^2} + 8x + 4\end{array}\)