K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)

và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)

Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)

\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)

Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)

Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)

6 tháng 7 2016

Áp dụng bất đẳng thức  a^2+b^2+c^2 > ab+bc+ac ta có : 

a^8 + b^8 + c^8 > (ab)^4 + (bc)^4 + (ca)^4 > (ab)^2.(bc)^2 + (bc)^2.(ca)^2 + (ca)^2.

(ab)^2 
> ab.bc.bc.ca + bc.ca.ca.ab + ca.ab.ab.bc = a^2.b^2.c^2(bc + ab + ac) 


\(\Rightarrow\)  (a^8 + b^8 + c^8)/(a^3.b^3.c^3) > a^2.b^2.c^2(ab + bc + ca)/(a^3.b^3.c^3) = (ab + bc

+ ca)/abc = 1/a + 1/b + 1/c 

\(\Rightarrow\) a^8 + b^8 + c^8 > (abc)^3 + (1/a + 1/b + 1c) (đpcm)

6 tháng 7 2016

Ta có : \(a^8+b^8+c^8\ge\left(abc\right)^3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (1)

\(\Leftrightarrow a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Áp dụng bất đẳng thức phụ : \(x^2+y^2+z^2\ge xy+yz+zx\) (có thể chứng minh bằng biến đổi tương đương)

Được : \(a^8+b^8+c^8=\left(a^4\right)^2+\left(b^4\right)^2+\left(c^4\right)^2\ge a^4b^4+b^4c^4+c^4a^4\)(2)

Lại có : \(a^4b^4+b^4c^4+c^4a^4=\left(a^2b^2\right)^2+\left(b^2c^2\right)^2+\left(c^2a^2\right)^2\ge a^2b^4c^2+b^2c^4a^2+c^2a^4b^2\)

\(\Leftrightarrow a^4b^4+b^4c^4+c^4a^4\ge a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ac\right)\) (3)

Từ (2) và (3) ta có : \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ac\right)\)

Vậy (1) được chứng minh.

1 tháng 8 2018

Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Thế vào đề ta được

\(xy+4\ge2\left(x+y\right)\)

\(\Leftrightarrow xy-2x+4-2y\ge0\)

\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)

Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)

Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo ) hihi

\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)

Áp dụng bđt Cosi ta được :

\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)

Mà ab=cd=1

Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)

=> ĐPCM haha

28 tháng 7 2019

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (do a,b,c >0)

Ta có đpcm

28 tháng 7 2019

may hoc thay nghia a

10 tháng 5 2017

đè sai r ,,,,thử a=b=c=3 xem. ok??

~ Hôm nay là thứ mấy ~

18 tháng 10 2019

với m\(\ge n;p\ge q\)=> (m-n)(p-q) \(\ge0\)<=> mp+nq \(\ge mq+np\)<=> mp+ nq\(\ge\frac{1}{2}\left(m+n\right)\left(p+q\right)\)

giả sử \(a\ge b=>\frac{1}{b+1}\ge\frac{1}{a+1};\)áp dụng bdt trên ta được

\(\frac{a}{b+1}+\frac{b}{a+1}\ge\frac{1}{2}\left(a+b\right)\left(\frac{1}{b+1}+\frac{1}{a+1}\right)\ge\frac{1}{2}\left(a+b\right)\frac{4}{a+1+b+1}\)( theo bdt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\))

vậy \(\frac{a}{b+1}+\frac{b}{a+1}+\frac{1}{a+b}\ge\frac{2\left(a+b\right)}{a+b+2}+\frac{1}{a+b}\)đặt a+b=X

ta được \(\frac{2X}{X+2}+\frac{1}{X}=\frac{2X^2+X+2}{\left(X+2\right)X}\ge\frac{3}{2}< =>4X^2+2X+4\ge3X\left(X+2\right)< =>\)(X-2)2 \(\ge0\)(đúng)

dấu '=' sảy ra khi X = a+b=2 và a=b hay a = b =1

17 tháng 8 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+abc+abc+ab^2+b^2c+abc+ac^2+bc^2-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+ab^2+b^2c+ac^2+bc^2-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2+c\left(a-c\right)^2+a\left(b-c\right)^2\ge0\)(luôn đúng \(\forall a;b;c>0\))

Vật bđt đã đc chứng minh

17 tháng 8 2017

Cho a,b,c>0 thì dễ thôi :v

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Khi a=b=c