Giải hệ phương trình ;
\(\hept{\begin{cases}\frac{1}{a-1}+\frac{1}{b-2}+\frac{1}{c-3}=1\\\frac{1}{\left(a-1\right)^2}-\frac{2}{\left(b-2\right)\left(c-3\right)}=-1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(a\ne1;b\ne2;c\ne3\)
Đặt \(\frac{1}{a-1}=x;\frac{1}{b-2}=y;\frac{1}{c-3}=z\). Khi đó hệ phương trình đã cho tương đương:
\(\hept{\begin{cases}x+y+z=1\\x^2-2yz=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y-z\\\left(1-y-z\right)^2-2yz=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\y^2+z^2+1+2yz-2y-2z-2yz=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\y^2+z^2-2y-2z+2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1-y-z\\\left(y-1\right)^2+\left(z-1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\\z=1\end{cases}}\).