Biết\(\frac{a}{a'}+\frac{b'}{b}=1\);\(\frac{b}{b'}+\frac{c'}{c}=1\)CMR abc+a'b'c'=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}\)
\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(A=\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}+\frac{2}{bc}+\frac{1}{c^2}+\frac{2}{ac}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
Linh không biết a + b + c = 0 để làm gì?
Bài 1 :
\(A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\left(1\right)\)
\(B=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)\)\(>\frac{1}{10}+\frac{1}{100}.90=1\left(2\right)\)
Từ (1) và ( 2) ta có \(A< 1\) \(B>1\)NÊN \(A< B\)
Bài 2:
\(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(=\frac{\left(a+b+c\right)-\left(b+c\right)}{b+c}+\)\(\frac{\left(a+b+c\right)-\left(c+a\right)}{c+a}\)\(+\frac{\left(a+b+c\right)-\left(a+b\right)}{a+b}\)
\(=\frac{7-\left(b+c\right)}{b+c}+\frac{7-\left(c+a\right)}{c+a}+\frac{7-\left(a+b\right)}{a+b}\)
\(=7.\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(=7.\frac{7}{10}-3\)\(=\frac{49}{10}-3=\frac{19}{10}\)
\(S=\frac{19}{10}>\frac{19}{11}=1\frac{8}{11}\)
Chúc bạn học tốt ( -_- )
Bài 1:
ta có: \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)(1)
ta có: \(\frac{1}{11}>\frac{1}{100};\frac{1}{12}>\frac{1}{100};...;\frac{1}{99}>\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\) ( có 90 số 1/100)
\(=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{10}+\frac{9}{10}=1\)
\(\Rightarrow B>1\)(2)
Từ (1);(2) => A<B
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2=\frac{1}{a+b+c}\)
Có: \(2=\frac{1}{a+b+c}\Rightarrow a+b+c=\frac{1}{2}\)
Xét \(\frac{b+c+1}{a}=2\Rightarrow b+c+1=2a\)
\(\Rightarrow a+b+c+1=3a\)
\(\Rightarrow\frac{1}{2}+1=3a\)
\(\Rightarrow3a=\frac{3}{2}\)
\(\Rightarrow a=\frac{1}{2}\)
Xét \(\frac{a+c+2}{b}=2\Rightarrow a+c+2=2b\)
\(\Rightarrow a+b+c+2=3b\)
\(\Rightarrow\frac{1}{2}+2=3b\)
\(\Rightarrow\frac{5}{2}=3b\)
\(\Rightarrow b=\frac{5}{6}\)
Xét \(\frac{a+b-3}{c}=2\Rightarrow a+b-3=2c\)
\(\Rightarrow a+b+c-3=3c\)
\(\Rightarrow\frac{1}{2}-3=3c\)
\(\Rightarrow\frac{-5}{2}=3c\)
\(\Rightarrow c=\frac{-5}{6}\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(\frac{1}{2};\frac{5}{6};\frac{-5}{6}\right)\)
\(\frac{b+c+1}{a}=\frac{a+c+2}{b}=\frac{a+b-3}{c}=\frac{b+c+1+a+c+2+a+b-3}{a+b+c}=2\)(T/C...)
\(\Rightarrow\frac{1}{a+b+c}=2\Rightarrow a+b+c=\frac{1}{2}=0,5\)
\(\Rightarrow\frac{b+c+1}{a}=2\Rightarrow\frac{0,5-a+1}{a}=2\Rightarrow1,5-a=2a\Rightarrow a=\frac{1}{2}\)
\(\Rightarrow\frac{a+c+2}{b}=2\Rightarrow\frac{0,5-b+2}{b}=2\Rightarrow2,5-b=2b\Rightarrow b=\frac{5}{6}\)
\(\Rightarrow c=0,5-\frac{1}{2}-\frac{5}{6}=-\frac{5}{6}\)
Theo bài ra ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)
\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)
Do đó ta có :
\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)
\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm)