K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Từ \(\dfrac{b}{c}=\dfrac{3}{4}\) =>\(\dfrac{b}{3}=\dfrac{c}{4}\) => \(\dfrac{b}{12}=\dfrac{c}{16}\) (1)

Từ \(\dfrac{a}{1}=\dfrac{b}{4}\) =>\(\dfrac{a}{3}=\dfrac{b}{12}\) (2)

Từ (1) và (2) => \(\dfrac{a}{3}=\dfrac{b}{12}=\dfrac{c}{16}=\dfrac{4a}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\dfrac{a}{3}=\dfrac{b}{12}=\dfrac{c}{16}=\dfrac{4a}{12}=\dfrac{4a+b-c}{12+12-16}=\dfrac{8}{8}=1\)

=>\(\left\{{}\begin{matrix}a=3\cdot1=3\\b=12\cdot1=12\\c=16\cdot1=16\end{matrix}\right.\)

Giải:

a)A=1/56+1/72+1/90+1/110+1/132+1/156

   A=1/7.8+1/8.9+1/9.10+1/10.11+1/11.12+1/12.13

   A=1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12+1/12-1/13

   A=1/7-1/13

  A=6/91

b)B=4/21+4/77+4/165+4/285+4/437+4/621

   B=4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27

   B=1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27

   B=1/3-1/27

   B=8/27

c) C=1/21+1/77+1/165+1/285+1/437+1/621

    C=1/3.7+1/7.11+1/11.15+1/15.19+1/19.23+1/23.27

    C=1/4.(4/3.7+4/7.11+4/11.15+4/15.19+4/19.23+4/23.27)

    C=1/4.(1/3-1/7+1/7-1/11+1/11-1/15+1/15-1/19+1/19-1/23+1/23-1/27)

    C=1/4.(1/3-1/27)

    C=1/4.8/27

    C=2/27

d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/21.26+1/26.31

    D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21+5/21.26+5/26.31)

    D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26+1/26-1/31)

    D=1/5.(1/1-1/31)

    D=1/5.30/31

    D=6/31

Nếu câu d cậu viết thiếu thì làm như vầy nhé!

Chúc bạn học tốt!

Nếu như câu d ko chép sai thì làm thế này nha:

d) D=1/1.6+1/6.11+1/11.16+1/16.21+1/26.31

    D=1/5.(5/1.6+5/6.11+5/11.16+5/16.21)+1/806

    D=1/5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21)+1/806

    D=1/5.(1/1-1/21)+1/806

    D=1/5.20/21+1/806

    D=4/21+1/806

    D=3245/16926

Chúc bạn học tốt!

2 tháng 12 2017

Viết gọn lại, ta cần chứng minh:
\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}\right)\)

\(\Leftrightarrow\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum4\left(\dfrac{1}{\dfrac{a+b}{ab}}\right)=\sum\dfrac{4ab}{a+b}\)

Thật vậy, ta có:

\(\sum\left(a+b+\dfrac{1}{4}\right)^2\ge\sum\left(2\sqrt{\left(a+b\right).\dfrac{1}{4}}\right)^2=\sum a+b\)

Vậy ta cần chứng minh:

\(\sum a+b\ge\sum\dfrac{4ab}{a+b}\Leftrightarrow\sum\left(a+b\right)^2\ge\sum4ab\Leftrightarrow\sum\left(a-b\right)^2\ge0\)

Vậy ta có đpcm. Đẳng thức xảy ra khi a=b=c


31 tháng 3 2017

a) = =

b) = = = . ( Với điều kiện b # 1)

c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).

d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =


 

NV
15 tháng 3 2022

\(\dfrac{1}{2a-1}+\dfrac{1}{1}\ge\dfrac{4}{2a-1+1}=\dfrac{2}{a}\)

Tương tự: \(\dfrac{1}{2b-1}+1\ge\dfrac{2}{b}\) ; \(\dfrac{1}{2c-1}+1\ge\dfrac{2}{c}\)

Cộng vế:

\(VT\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}=\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 8 2023

a) \(...\dfrac{11}{4}-a+\dfrac{1}{4}=\dfrac{3}{2}\)

\(\dfrac{11}{4}+\dfrac{1}{4}-a=\dfrac{3}{2}\)

\(3-a=\dfrac{3}{2}\)

\(a=3-\dfrac{3}{2}\)

\(a=\dfrac{6}{2}-\dfrac{3}{2}\)

\(a=\dfrac{3}{2}\)

b) \(...\dfrac{13}{4}-a-\dfrac{13}{4}=\dfrac{7}{8}\)

\(\dfrac{13}{4}-\dfrac{13}{4}-a=\dfrac{7}{8}\)

\(0-a=\dfrac{7}{8}\)

\(a=-\dfrac{7}{8}\) (ra số âm lớp 5 chưa học nên bạn xem lại đề)

c) \(...\dfrac{17}{6}-\dfrac{3}{2}-a=\dfrac{1}{6}\)

\(\dfrac{17}{6}-\dfrac{9}{6}-a=\dfrac{1}{6}\)

\(\dfrac{8}{6}-a=\dfrac{1}{6}\)

\(a=\dfrac{8}{6}-\dfrac{1}{6}\)

\(a=\dfrac{7}{6}\)

25 tháng 8 2023

a, 2\(\dfrac{3}{4}\) - a + \(\dfrac{1}{4}\) = 1\(\dfrac{1}{2}\)

     a = 2 + \(\dfrac{3}{4}\) + \(\dfrac{1}{4}\) - 1 - \(\dfrac{1}{2}\)

     a  = 2 + 1 - 1 - \(\dfrac{1}{2}\)

     a  = 2 - \(\dfrac{1}{2}\)

     a = \(\dfrac{3}{2}\)

b, 3\(\dfrac{1}{4}\) - a - 3\(\dfrac{1}{4}\) = \(\dfrac{7}{8}\)

    (3\(\dfrac{1}{4}\) - 3\(\dfrac{1}{4}\)) - a = \(\dfrac{7}{8}\)

                     a = - \(\dfrac{7}{8}\)

c,    2\(\dfrac{5}{6}\) - 1\(\dfrac{1}{2}\) - a  = \(\dfrac{1}{6}\)

    a =  2 + \(\dfrac{5}{6}\) - 1 - \(\dfrac{1}{2}\)  - \(\dfrac{1}{6}\) 

     a =  (2-1) + (\(\dfrac{5}{6}\) - \(\dfrac{1}{6}\)) - \(\dfrac{1}{2}\)

     a = 1 +  \(\dfrac{2}{3}\) - \(\dfrac{1}{2}\)

     a = \(\dfrac{7}{6}\)

2 tháng 8 2021

a) `A=a. 1/3 + a. 1/4 - a.1/6 = a. (1/3+1/4 -1/6)=a. 5/12`

Thay `a=-3/5: A=-3/5 . 5/12 =-1/4`

b) `B=b. 5/6+ b. 3/4-b. 1/2=b.(5/6+3/4-1/2)=b. 13/12`

Thay `b=12/13: B=12/13 . 13/12=1`.

a) Ta có: \(A=a\cdot\dfrac{1}{3}+a\cdot\dfrac{1}{4}-a\cdot\dfrac{1}{6}\)

\(=a\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{6}\right)\)

\(=a\cdot\left(\dfrac{4}{12}+\dfrac{3}{12}-\dfrac{2}{12}\right)\)

\(=a\cdot\dfrac{5}{12}\)

\(=\dfrac{-3}{5}\cdot\dfrac{5}{12}=\dfrac{-1}{4}\)

b) Ta có: \(B=b\cdot\dfrac{5}{6}+b\cdot\dfrac{3}{4}-b\cdot\dfrac{1}{2}\)

\(=b\left(\dfrac{5}{6}+\dfrac{3}{4}-\dfrac{1}{2}\right)\)

\(=b\cdot\left(\dfrac{10}{12}+\dfrac{9}{12}-\dfrac{4}{12}\right)\)

\(=b\cdot\dfrac{5}{4}\)

\(=\dfrac{12}{13}\cdot\dfrac{5}{4}=\dfrac{60}{52}=\dfrac{15}{13}\)

\(M=\dfrac{3^{14}\cdot5^4-3^{12}\cdot5^4}{3^{12}\cdot5^6+7\cdot3^{12}\cdot5^6}=\dfrac{3^{12}\cdot5^4\left(3^2-1\right)}{3^{12}\cdot5^6\left(1+7\right)}=\dfrac{1}{25}\)

3 tháng 8 2023

a,a+1/4=2 3/4-1 1/2    

a+1/2=5/4

    a=5/4-1/2

     a=3/4

b,a-7/4=13/4-7/9

a-7/4=89/36

        a= 89/36+7/4

         a=152/36

c,3/2-a=17/6-1/6

3/2-a=8/3

       a= 3/2-8/3

       a= -7/6

a) \(2\dfrac{3}{4}-a+\dfrac{1}{4}=1\dfrac{1}{2}\) 

=> \(\dfrac{11}{4}\) \(-a+\dfrac{1}{4}=\dfrac{3}{2}\) 

=> \(\dfrac{11}{4}-a\) = \(\dfrac{3}{2}-\dfrac{1}{4}\) 

=> a = \(\dfrac{11}{4}-\dfrac{5}{4}\) =\(\dfrac{3}{2}\) 

Vậy a = \(\dfrac{3}{2}\) 

b) \(3\dfrac{1}{4}-a-1\dfrac{3}{4}=\dfrac{7}{8}\) 

=> \(\dfrac{13}{4}-a-\dfrac{7}{4}=\dfrac{7}{8}\) 

=> \(\dfrac{13}{4}-a=\dfrac{21}{8}\) 

=> \(a=\dfrac{13}{4}-\dfrac{21}{8}=\dfrac{5}{8}\) 

Vậy a = \(\dfrac{5}{8}\)