C/M X2+X+1>=2\(|X|\) x\(\sqrt{X+1}\)với X>=1
chú thích: x: nhân; >=: lớn hơn hoặc bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\ge\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}=\frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}\)
\(A_{min}=\frac{3}{2}\) khi \(x=4\)
\(B=\frac{x+3+2\sqrt{x}}{\sqrt{x}}\ge\frac{2\sqrt{3x}+2\sqrt{x}}{\sqrt{x}}=2\sqrt{3}+2\)
\(B_{min}=2\sqrt{3}+2\) khi \(x=3\)
Xem lại đề câu C, với \(x>0\) thì \(C_{min}\) ko tồn tại
Bạn ơi cho mình hỏi tại sao \(\frac{\left(x+4\right)-\sqrt{x}}{2\sqrt{x}}\)lại lớn hơn hoặc bằng \(\frac{2\sqrt{4x}-\sqrt{x}}{2\sqrt{x}}\)vậy ạ?
2.
a)
\(\left(2-\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(2-\frac{2\sqrt{a}-a}{\sqrt{a}-2}\right)\\ =\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(2+\frac{\sqrt{a}\left(2-\sqrt{a}\right)}{2-\sqrt{a}}\right)\\ =\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)\\ =2^2-\left(\sqrt{a}\right)^2\\ =4-a\)
b)
\(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right):\frac{\sqrt{x}+1}{x}\\ =\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\cdot\frac{x}{\sqrt{x}+1}\\ =\frac{x-1}{\sqrt{x}}\cdot\frac{x}{\sqrt{x}+1}\\ =\sqrt{x}\left(\sqrt{x}-1\right)\\ =x-\sqrt{x}\)
c)
\(\left(\frac{1-x\sqrt{x}}{1-x}+\sqrt{x}\right)\left(\frac{1-\sqrt{x}}{1-x}\right)^2\\ =\left(\frac{1-\sqrt{x^3}}{1-x}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left(1-x\right)^2}\\ =\left(\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\sqrt{x}\right)\cdot\frac{\left(1-\sqrt{x}\right)^2}{\left[\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\right]^2}\\ =\left(\frac{1+\sqrt{x}+x+\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\\ =\frac{2x+2\sqrt{x}+1}{1+\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{2x+2\sqrt{x}+1}{\left(1+\sqrt{x}\right)^3}\)
1. (Ko viết lại đề nha :v)
a)
\(A=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\\ =\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\left(\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\\ =\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
b) Để A đạt giá trị nguyên thì \(2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{-1;1;-2;2\right\}\\ \Leftrightarrow x\in\left\{0;2;-1;3\right\}\)
Vậy......
Phần 3:
Ta đã rút gọn được \(P=\frac{4x}{\sqrt{x}-3}\)
Ta có: \(m(\sqrt{x}-3)P> x+1\) với mọi \(x>4\)
\(\Leftrightarrow m(\sqrt{x}-3).\frac{4x}{\sqrt{x}-3}> x+1\) với mọi \(x>4\)
\(\Leftrightarrow 4mx> x+1\) với mọi \(x>4\)
\(\Leftrightarrow m> \frac{x+1}{4x}\) với mọi \(x>4\)
Điều này xảy ra khi mà \(m> max \left(\frac{x+1}{4x}\right)\)
Ta có: \(\frac{x+1}{4x}=\frac{1}{4}+\frac{1}{4x}<\frac{1}{4}+\frac{1}{4.4}\Leftrightarrow \frac{x+1}{4x}< \frac{5}{16}\) (do \(x>4\) )
\(\Rightarrow max\left(\frac{x+1}{4x}\right)< \frac{5}{16}\)
Do đó \(m\geq \frac{5}{16}\) thỏa mãn điều kiện đã cho.
a) x + \(\sqrt{\left(x-2^{ }\right)^2}\)= x +\(|x-2|\)= x +2-x (vì x<2)
b) \(\sqrt{\left(x-3\right)^2}\)-x = \(|x-3|-x=x-3-x\) (vì x>3)
c) m- \(\sqrt{m^2-2m+1}=m-\sqrt{\left(m-1\right)^2}\)
Những con còn lại bạn làm như trên và rút gọn đi là được
d: \(=x+y-\left|x-y\right|\)
=x+y-x+y=2y
e: \(=\left|5a-1\right|-4a=\left|5\cdot\dfrac{1}{2}-1\right|-2\)
\(=\dfrac{5}{2}-1-2=\dfrac{5}{2}-3=-\dfrac{1}{2}\)
f: \(=\left|2a-3\right|-4a-1\)
\(=\left|-10-3\right|-4\cdot\left(-5\right)-1=13+20-1=32\)
a: \(P=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)
\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)
b: Để P>0 thì -(x-1)>0
=>x-1<0
=>0<x<1
c: Để P=-2 thì \(-\left(x-1\right)=-2\sqrt{x}\)
=>\(x-1-2\sqrt{x}=0\)
=>căn x=1+căn 2
=>x=3+2 căn 2