(d1):y=x+1; (d2):y=-x+1
(d1) cắt (d2) ở C, (d1) và (d2) cắt trục Ox theo thứ tự A và B. Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, PTHDGD: \(x+1=2x+5\Leftrightarrow x=-4\Leftrightarrow y=-3\Leftrightarrow A\left(-4;-3\right)\)
Vậy \(A\left(-4;-3\right)\) là giao 2 đths
b, PTHDGD: \(5-3x=3-x\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\)
Vậy \(B\left(1;2\right)\) là giao 2 đths
c, PTHDGD: \(2x-1=-2x+3\Leftrightarrow x=1\Leftrightarrow y=1\Leftrightarrow C\left(1;1\right)\)
Vậy \(C\left(1;1\right)\) là giao 2 đths
d, PTHDGD: \(x+2=3x-4\Leftrightarrow x=3\Leftrightarrow y=5\Leftrightarrow D\left(3;5\right)\)
Vậy \(D\left(3;5\right)\) là giao 2 đths
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
a: Để (d)//d1 thì \(\left\{{}\begin{matrix}m^2+m-6=0\\m+1\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)
\(\Rightarrow m=\pm2.\)
(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).
\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow m=-2.\)
(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)
\(m^2x+1-4m=-\dfrac{1}{4}x+1\)
\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).
Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).
Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\).
a,Giao của d1 và d2 là điểm có hoành độ thỏa mãn pt :
x -1 = - x + 3
x - 1 + x - 3 = 0
2x - 4 = 0
2x = 4
x = 2
thay x = 2 vào pt y = x - 1 => y = 2 - 1 = 1
Giao của d1 và d2 là A ( 2; 1)
b, để d1; d2; d3 đồng quy thì d3 phải đi qua giao điểm của d1 và d2 là điểm A ( 2; 1)
Thay tọa độ điểm A vào pt d3 ta có :
2.(m-2) .2 + (m-1) = 1
4m - 8 + m - 1 = 1
5m - 9 = 1
5m = 10
m = 2
vậy với m = 2 pt d3 là y = 2 -1 = 1 thì d1; d2 ; d3 đồng quy tại 1 điểm
c, vẽ đồ thị hàm số câu này dễ bạn tự làm nhé
Giao d1 với Ox là điểm có tung độ y = 0 => x -1 = 0 => x = 1
Vậy giao d1 với Ox là điểm B( 1;0)
độ dài OB là 1
Giao d1 với trục Oy điểm có hoành độ x = 0 => y = 0 - 1 = -1
Vậy giao d1 với Oy là điểm C ( 0; -1)
Độ dài OC = |-1| = 1
vẽ đồ thị bạn tự vẽ nhé
d, Xét tam giác vuông OBC có
OB = OC = 1 ( cmt)
=> tam giác OBC vuông cân tại O
=> góc OBC = ( 1800 - 900): 2 = 450
Kết luận d1 tạo với trục Ox một góc bằng 450
2:
a:
b: Tọa độ giao điểm là nghiệm của hệ:
x-1=-2x+2 và y=x-1
=>3x=3 và y=x-1
=>x=1 và y=1-1=0
1:
a: Thay x=-1 và y=0 vào (d), ta được:
m+1=0
=>m=-1
c: tọa độ giao điểm là:
2x-2=-x+4 và y=2x-2
=>3x=6 và y=2x-2
=>x=2 và y=4-2=2
Thay x=2 và y=2 vào (d), ta được:
m-2=2
=>m=4
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
Giao của (d1) và Ox: \(y_A=0\Rightarrow x_A+1=0\Rightarrow x_A=-1\)
GIao của (d2) và Ox: \(y_B=0\Rightarrow-x_B+1=0\Rightarrow x_B=1\)
Pt hoành độ giao điểm (d1) và (d2):
\(x+1=-x+1\Rightarrow x=0\Rightarrow y=1\)
\(\Rightarrow C\left(0;1\right)\)
Diện tích ABC:
\(S_{ABC}=\dfrac{1}{2}.\left|y_C\right|.\left|x_A-x_B\right|=\dfrac{1}{2}.1.2=1\)
Tọa độ C là:
\(\left\{{}\begin{matrix}x+1=-x+1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+1=1\end{matrix}\right.\)
Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-1\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\-x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-x=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Vậy: A(-1;0); B(1;0); C(0;1)
\(AB=\sqrt{\left(1+1\right)^2+\left(0-0\right)^2}=2\)
\(AC=\sqrt{\left(0+1\right)^2+\left(1-0\right)^2}=\sqrt{1^2+1^2}=\sqrt{2}\)
\(BC=\sqrt{\left(0-1\right)^2+\left(1-0\right)^2}=\sqrt{1^2+1^2}=\sqrt{2}\)
Xét ΔABC có \(CA^2+CB^2=AB^2\)
nên ΔCAB vuông tại C
=>\(S_{ABC}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot\sqrt{2}\cdot\sqrt{2}=1\)