chung minh dang thuc sau;(a+b+c)^3=a^3+b^3+c^3+3(a+b)(b+c)(c+a)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trieu Trong Thai
CM a3+b3+c2 >= ab+bc+ac (*)
2a^2 +2b^2 +2c^2 - 2ab -2bc -2ac = (a-b)^2 + (b-c)^2 + (a-c)^2 >= 0
từ * => a^2 +b^2+c^2 +2ab+2bc+2ac >= 3ab+3bc+3ac <=> (a+b+c)^2 >= 3ab +3ac+3bc
từ * => 2ab +2ac+2bc+ a^2+b^2+c^2 =< 3a^2+3b^2+3c^2 <=> (a+b+c)^2 =< ...
de bai sai sua lai la
\(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
bien doi ve phai ta co:
\(\left(a-b\right)\left(a+b\right)^2\)
\(=a^3+ab^2-a^2b-b^3\)
\(=a^3-b^3+ab\left(b-a\right)\)= ve trai
vay \(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
BĐT Cosi cho 2 số a,b >0:
a + b >= 2căn(ab)
di từ: ( √a - √b)² ≥ 0 ( voi moi a , b ≥ 0 )
<=> a + b - 2√(ab) ≥ 0
<=> a + b ≥ 2√(ab)
dau "=" xay ra khi √a - √b = 0 <=> a = b
Ta có:\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)\(\forall a,b\ge0\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(đpcm\right)\)
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(-a-b\right)^2=a^2-2\left(-a\right)b+b^2\)\(=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2=\left(-a-b\right)^2\)( đpcm )
Ta có:
\(\left(-a-b\right)^2=[-\left(a+b\right)]^2=[-\left(a+b\right)]\times[-\left(a+b\right)]=\left(a+b\right)\times\left(a+b\right)=\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^2=\left(-a-b\right)^2\)(đpcm)
vì a chia hết cho 5 nên a đồng dư với 0 mod 5
suy ra a^4 đồng dư với 0^5 đồng dư với 0 mod 5(1)
vì b chia hết cho 5 nên b đồng dư với 0 mod 5
suy ra b^4 đồng dư với 0^5 đồng dư với 0 mod 5(2)
từ (1),(2) suy ra a^4-b^4 đồng dư với 0-0=0 mod 5
suy ra a^4-b^4 chia hết cho 5 (đpcm)
Dùng phép khai triển.