Cho tam giác ABC,có AB=AC.Kẻ BH vuông góc AC,kẻ CK vuông góc AB(H thuộc AC);(K thuoc AB) CM AH=AK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét tam giác AHB vuông tại H và tam giác AKC vuông tại K có
góc A chung
AB = AC (gt)
Vậy tam giác AHB = tam giác AKC ( cạnh huyền góc nhọn)
suy ra BH = CK, AH = AK
b) ta có AH = AK; AB = AC
mà BK = AB - AK và HC = AC - AH
=> Bk = HC
Xét hai tam giác vuông tam giác BIK và tam giác CIH có:
góc KIB = góc HIC ( đối đỉnh)
BK = HC (cmt)
Vậy tam gics BIK = tam giác CIH
c) M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC
mà tam giác ABC là tam giác cân tại A nên AM đồng thời là trung tuyến, đường cao
mặt khác BH và Ck cũng là đường cao của tam giác ABC nên BH; CK; Am đồng quy tại 1 điểm
Suy ra A; I; M thẳng hàng
Xét tam giác vuông BKC và tam giác vuông CHB có:
CK = BH (gt)
BC chung
=> Tam giác vuông BKC = Tam giác vuông CHB (ch - cgv)
=> ^B = ^C (2 góc tương ứng)
Xét tam giác ABC: ^B = ^C (cmt)
=> Tam giác ABC cân tại A
Ta có: ΔABC cân tại A
=> Góc B = góc C
=> AB = AC
Xét 2 ΔKBC và ΔHCB có
Góc B = góc C
BC chung
Góc BKC = góc BHC = 90o
=> ΔKBC = ΔHCB (c - g - c)
=> BK = HC
Mà AB = AC (cmt)
=> AK = AH (dpcm)
Tam giác ABH vuông tại H
⇒ ∠(ABH) +∠A =90o (tính chất tam giác vuông)
⇒∠(ABH) =90o - ∠A (1)
Tam giác ACK vuông tại K
⇒∠(ACK) +∠A =90o(tính chất tam giác vuông)
⇒∠(ACK) =90o-∠A (2)
từ (1) và (2) suy ra: ∠(ACK) =∠(ABH)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
góc A chung
=>ΔABH=ΔACK
b: góc KBC+góc ICB=90 độ
góc IBC+góc HCB=90 độ
mà góc KBC=góc HCB
nên góc IBC=góc ICB
=>ΔIBC cân tại I
mà IM là đường cao
nên IM là phân giác của góc BIC
Bạn tự vẽ hình nha.
Tam giác ABC coa AB=AC=>ABC là tam giác cân tại A(ĐN)
Xét \(\Delta BCK\left(\widehat{K}=90^0\right)\) và \(\Delta CBH\left(\widehat{H}=90^0\right)\) có:
BC -chung
\(\widehat{B}=\widehat{C}\) (hai góc ở đáy của tam giác cân)
=>\(\Delta BCK=\Delta CBH\)(cạnh huyền góc nhọn) (1)
Từ (1)=>\(\widehat{HBC}=\widehat{KCB}\)mà \(\widehat{B}=\widehat{C}\) (chứng minh trên)=>Trừ vế với vế ta có :\(\widehat{ABH}=\widehat{ACK}\)
Từ (1) =>CK=BH(hai cạnh tương ứng của hai tam giác bằng nhau)
Xét \(\Delta AKC\left(\widehat{K=90^0}\right)và\Delta AHB\left(\widehat{H}=90^0\right)\) có :
\(\widehat{ABH}=\widehat{ACK}\) (chứng minh trên)
Góc A chung
=>\(\Delta AKC=\Delta AHB\)(cạnh góc vuông-góc nhọn)
=>AH=Ak(2 cạnh tương ứng của 2 tam giác bằng nhau) (ĐPCM)