Cho góc xOy =60 độ và điểm A thuộc Ox;(A khác O).Trên nửa mặt phẳng bờ chứa tia Ox,không chứa tia Oy,vẽ tia At sao cho góc xAt=120 độ.Chứng tỏ rằng đường thẳng chứa tia Oy và đường thẳng chứa tia At song song với nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)Xét △OAH(∠OAH=90o) và △OBH(∠OBH=90o) có:
OH là cạnh chung
∠AOH=∠BOH(OH là tia phân giác của ∠xOy)
=>△OAH=△OBH(ch.gn)
b)△OBH là tam giác vuông (∠OBH=90o)
Chúc bạn học tốt
a/ Do H∈ phân giác xOyˆ mà HA⊥Ox; HB⊥Oy→HA=HB→ΔHAB cân tại H ( đpcm )
b/ Ta có + ΔOAH=ΔOBH(ch−gn)→OA=OB+ ΔOAC=ΔOBC (c−g−c)→OACˆ=OBCˆ
mà xOyˆ+OACˆ=90o→xOyˆ+OBCˆ=90o
Xét ΔOBM có BOMˆ+OBMˆ=90o→OMBˆ=90o→BC⊥Ox
c/ Xét ΔAOB có AOBˆ=60o;AO=BO(c/m phần b)→ΔAOB đều
đường cao AD đồng thời là phân giác OABˆ→OADˆ=30o
Xét Δ AOD vuông tại D có OADˆ=30o→OD=12OA→OA=2OD ( trong tam giác vuông, đối diện với góc bằng 30o là cạnh bằng 12 cạnh huyền )
tic mình nha
toán học sinh giỏi đây (^,^;) <cả đại cả hình đấy nhé !> - Học ...
VÀO ĐÂY XEM NHÉ DÀI LẮM
Hình bạn tự vẽ nha
a) Ví Ay' // Oy
=>\(\widehat{xAy'}=\widehat{AOy}=60độ\)
Ta có: \(\widehat{xAy'}+\widehat{OAy'}=180độ\)
\(60độ+\widehat{OAy'}=180độ\)
\(\widehat{OAy'}=120độ\)
Vậy \(\widehat{xAy'}=60độ;\widehat{OAy'}=120độ\)
b) Vì At' là tia phân giác \(\widehat{xAy'}\)
=>\(\widehat{xAt'}=\frac{\widehat{xAy'}}{2}=\frac{60độ}{2}=30độ\)
Vì Ot là tia phân giác \(\widehat{AOy}\)
=>\(\widehat{AOy}=\frac{\widehat{AOy}}{2}=\frac{60độ}{2}=30độ\)
Vậy \(\widehat{xAt'}=\widehat{AOt}=30độ\)
c) Vì \(\widehat{xAt'}=\widehat{AOt}\)
Mà 2 góc này ở vị trí đồng vị
=>Ot // At'
\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{65}+\frac{1}{85}+\frac{1}{91}<\frac{1}{5}+\left(\frac{1}{14}+\frac{1}{14}\right)+\left(\frac{1}{44}.4\right)\)
\(=\frac{1}{5}+\frac{1}{7}+\frac{1}{11}=\frac{167}{385}<\frac{167}{334}=\frac{1}{2}\)
\(\Rightarrowđpcm\)