b1
ko thực hiện phép tính, hãy cho biết biểu thức 1935-540+270 có chia hết cho cả 5 và 9 hay không?Vì sao?
B2:
tìm số tự nhiên x biết 5^3x-1-5^2x+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y chia 19 được thương là 20, dư là 8
=>\(y=19\cdot20+8=380+8=388\)
\(\left(2x+1\right)^3=125\\ \Rightarrow\left(2x+1\right)^3=5^3\\ \Rightarrow2x+1=5\\ \Rightarrow2x=5-1\\ \Rightarrow2x=4\\ \Rightarrow x=4:2\\ \Rightarrow x=2\)
\(\left(2x+1\right)^3=125\)
=>\(\left(2x+1\right)^3=5^3\)
=>2x+1=5
=>2x=5-1=4
=>\(x=\dfrac{4}{2}=2\)
Để `5n+22 \vdots n+3,` ta có:
`5n +22 \vdots n+3`
`=> 5n + 15 + 7 \vdots n + 3`
`=> 5 (n + 3) + 7 \vdots n + 3`
Vì:: `5 ( n + 3)\vdots n + 3 -> n + 3 in Ư(7)={+-1;+-7}`
`=> n = {-2;-4;4;-10}`
Vậy: `n = {-2;-4;4;-10}` thì `5n + 22 \vdots n+3`
\(5n+22⋮n+3\\ \Leftrightarrow5n+15+7⋮n+3\\ \Leftrightarrow7⋮n+3\text{ }\left(\text{Vì 5n + 14 ⋮ n + 3}\right)\\ \Leftrightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n+3=1\\n+3=-1\\n+3=7\\n+3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=-2\\n=-4\\n=4\\n=-10\end{matrix}\right.\)
Vậy \(n\in\left\{-2;-4;4;-10\right\}\)
Tổng 3 số là
18x3=54
Nếu gấp số thứ nhất lên 2 lần thì tổng 3 số mới là
22x3=66
Số thứ nhất là
66-54=8
Nếu gấp số thứ 2 lên 2 lần thì tổng 3 số mới là
24x3=72
Số thứ 2 là
72-54=18
Số thứ 3 là
54-(8+18)=28
a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(CF=DF=\dfrac{CD}{2}\)
mà AB=CD
nên AE=EB=CF=DF
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
b: Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
=>BF//DE
Xét ΔABK có
E là trung điểm của AB
EI//KB
Do đó: I là trung điểm của AK
=>AI=IK
Xét ΔDIC có
F là trung điểm của DC
FK//DI
Do đó: K là trung điểm của IC
=>IK=KC
mà AI=IK
nên AI=IK=KC
Cách 1:
\(D=\left\{0;4;8;12;16;20\right\}\)
Cách 2:
\(D=\left\{x\in N|x⋮4,x< 21\right\}\)
\(\left(3\cdot4\cdot2^{16}\right)^2:\left(11\cdot2^{13}\cdot4^{11}-16^9\right)\\ =\left(3\cdot2^2\cdot2^{16}\right)^2:\left(11\cdot2^{13}\cdot2^{22}-2^{36}\right)\\ =3^2\cdot2^4\cdot2^{32}:\left(11\cdot2^{35}-2^{36}\right)\\ =3^2\cdot2^{36}:\left[2^{35}\cdot\left(11-2\right)\right]\\ =9\cdot2^{36}:\left(2^{35}\cdot9\right)\\ =9\cdot2^{36}:2^{35}:9\\ =2\)
Để `(x+3)\vdots(x+1),` ta có:
`(x+3)\vdots(x+1)`
`=> (x+1)+2\vdots(x+1)`
Vì: `(x+1)\vdots(x+1)` \(\rightarrow\) `(x+1)` thuộc `Ư(2) = {+-1;+-2}`
`=> x = {0;-2;1;-3}`
Vậy: `x={0;-2;1;-3}` thì `(x+3)\vdots(x+1)`
(x+3)⋮(x+1)
x+1+2⋮x+1
2⋮x+1 (Vì x+1⋮x+1)
=> x+1 thuộc Ư(2) = {-1; 1; 2; -2}
=> x thuộc {-2; 0; 1; -3}
Vậy x thuộc {-2, 0; 1; -3}
a: Xét tứ giác BECD có
BE//CD
BD//CE
Do đó: BECD là hình bình hành
b: Xét tứ giác BDFC có
BD//FC
BC//DF
Do đó: BDFC là hình bình hành
=>BD=FC; BC=DF
Ta có: BECD là hình bình hành
=>BE=CD; BD=CE
Ta có: ABCD là hình bình hành
=>AB=CD; BC=AD
Ta có: AB=CD
CD=BE
Do đó: BE=BA
=>B là trung điểm của AE
Ta có: AD=BC
BC=DF
Do đó: AD=DF
=>D là trung điểm của AF
Ta có: BD=FC
BD=CE
Do đó: CF=CE
=>C là trung điểm của FE
Xét ΔAFE có
AC,FB,ED là các đường trung tuyến
Do đó: AC,FB,ED đồng quy
1: \(1935⋮5;540⋮5;270⋮5\)
Do đó: \(1935-540+270⋮5\)
\(1935⋮9;540⋮9;270⋮9\)
Do đó: \(1935-540+270⋮9\)
2: \(5^{3x-1}-5^{2x+1}=0\)
=>\(5^{3x-1}=5^{2x+1}\)
=>3x-1=2x+1
=>3x-2x=1+1
=>x=2