K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

undefined

1
3 tháng 8 2021

\(ĐK:x\ge0\)

\(x-5\sqrt{x}-6=0\Leftrightarrow x-6\sqrt{x}+\sqrt{x}-6=0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-6\right)+\left(\sqrt{x}-6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-6\right)\left(\sqrt{x}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-6=0\\\sqrt{x}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=36\left(tm\right)\\\sqrt{x}=-1\left(voli\right)\end{cases}}\)

Vậy x = 36

3 tháng 8 2021

ĐK : x >= 0

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-1\right)^2}-\sqrt{\left(\sqrt{x}-2\right)^2}=10\)

\(\Leftrightarrow\left|\sqrt{x}-1\right|-\left|\sqrt{x}-2\right|=10\)(1)

Với 0 ≤ x < 1

(1) <=> \(1-\sqrt{x}-2+\sqrt{x}=10\Leftrightarrow-1=10\left(voli\right)\)

Với 1 ≤ x < 4

(1) <=> \(\sqrt{x}-1-2+\sqrt{x}=10\Leftrightarrow2\sqrt{x}=13\Leftrightarrow x=\frac{169}{4}\)(loại)

Với x ≥ 4

(1) <=> \(\sqrt{x}-1-\sqrt{x}-2=10\Leftrightarrow-3=10\left(voli\right)\)

Vậy phương trình vô nghiệm 

3 tháng 8 2021

\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|\)

\(TH1:1\le x\le2\)

\(\sqrt{x-1}+1+1-\sqrt{x-1}\)

\(=2\)

\(TH2:x>2\)

\(\sqrt{x-1}+1+\sqrt{x-1}-1\)

\(2\sqrt{x-1}\)

3 tháng 8 2021

ĐK : x >= 1

Đặt \(A=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(A^2=\left(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\right)^2\)

\(A^2=\left|x+2\sqrt{x-1}\right|+2\sqrt{\left(x+2\sqrt{x-1}\right)\left(x-2\sqrt{x-1}\right)}+\left|x-2\sqrt{x-1}\right|\)

\(A^2=x+2\sqrt{x-1}+2\sqrt{x^2-4x+4}+x-2\sqrt{x-1}\)

\(A^2=2x+2\sqrt{\left(x-2\right)^2}=2x+2\left|x-2\right|\)

Với 1 ≤ x < 2 => A2 = 2x - 2( x - 2 ) = 2x - 2x + 4 = 4 => A = 2

Với x ≥ 2 => A2 = 2x + 2x - 4 = 4x - 4 => A = 2√(x-1)

3 tháng 8 2021

ĐK : x ≥ 0 , x ≠ 1

\(=\left[\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{x+2}{\sqrt{x}+1}\right]\left[\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\)

\(=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}\cdot\frac{x-\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}\cdot\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\)

DD
3 tháng 8 2021

\(\frac{a}{b}=\frac{1}{4}\Rightarrow b=4a\)

\(a,b>0\)

\(B=\frac{-\sqrt{a}-\sqrt{b}}{a-\sqrt{ab}}=\frac{-\sqrt{a}-\sqrt{4a}}{a-\sqrt{a.4a}}=\frac{-\sqrt{a}-2\sqrt{a}}{a-2a}=\frac{-3\sqrt{a}}{-a}=\frac{3}{\sqrt{a}}=1\)

\(\Rightarrow a=9\Rightarrow b=36\).

4 tháng 3 2022

e chịu hoy cj

3 tháng 8 2021

Bài này bạn tự vẽ hình nha,

Gợi ý: b là cạnh đối diện góc B nên AC=b

          c là cạnh đối diện góc C nên AB=c

Do tam giác ABC vuông tại A nên

\(sin\widehat{B}=\frac{AC}{BC}=\frac{b}{BC}\)

\(\Rightarrow\)\(\frac{b}{sin\widehat{B}}=\frac{b}{\frac{b}{BC}}=b.\frac{BC}{b}=BC\)  ( 1 )

\(sin\widehat{C}=\frac{AB}{BC}=\frac{c}{BC}\)

\(\Rightarrow\)\(\frac{c}{sin\widehat{C}}=\frac{c}{\frac{c}{BC}}=c.\frac{BC}{c}=BC\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow\)\(\frac{b}{sin\widehat{B}}=\frac{c}{sin\widehat{C}}\)

Bạn nhớ kỹ cái này nhé:

sin : Đi - học ( Đối - huyền)

cos : Không - hư ( Kề - huyền )

tan : Đoàn - kết ( Đối - kề )

cot : Kết - đoàn ( Kề - đối )