Cho đường tròn tâm O bán kính R, dây cung AB=R. Trên tia đối của tia BA lấy điểm C sao cho BC=BA. Tia CD cắt đường tròn (O) ở D. Biết R=3cm
a) Tính \(\widehat{ACD}\)
b) Tính CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do tam giác vuông cân nội tiếp đường tròn => đường kính = độ dài cạnh huyền của tam giác vuông cân
bình phương cạnh huyền = tổng bình phương 2 cạnh góc vuông
=> bình phương cạnh huyền = 18
=> độ dài cạnh huyền = đường kính = \(3\sqrt{2}\)
=> bán kính = \(\frac{3\sqrt{2}}{2}\)
Đặt \(\sqrt[3]{a-b}=x,\sqrt[3]{b-c}=y,\sqrt[3]{c-a}=z\)
suy ra \(x^3+y^3+z^3=0\)
Ta có hằng đẳng thức:
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
mà \(x+y+z=0\)
suy ra \(-3xyz=0\)
Khi đó \(x=0\)hoặc \(y=0\)hoặc \(z=0\)
suy ra \(a=b\)hoặc \(b=c\)hoặc \(c=a\).
Với mỗi trường hợp ta đều suy ra \(a=b=c\).
ĐK: \(xy\ge0\).
Để tồn tại \(\sqrt{A}\)thì \(A\ge0\).
Nếu \(x,y\le0\)thì \(A=\frac{\sqrt{xy}}{x+y-\sqrt{xy}}< 0\)do đó \(x,y\ge0\).
\(A=\frac{\sqrt{xy}}{x+y-\sqrt{xy}}\le\frac{\sqrt{xy}}{2\sqrt{xy}-\sqrt{xy}}=1\)
Do đó \(0\le A\le1\)nên \(\sqrt{A}\ge A\).