S=5+52+53+...+52006
a,tính S
b,c/m s⋮126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi sau ít nhất số ngày ba bạn lại cùng trực là a(ngày,a thuộc N*)
Theo bài ra ta có:
a chia hết cho 5
a chia hết cho 10
a chia hết cho 8
=>a thuộc BCNN(5,10,8)
Ta có:
5=5
10=2x5
8=2^3
=>BCNN(5,10,8)=2^3X5=40
Ta có:
\(A=1+2+2^2+...+2^{2002}\)
\(2A=2+2^2+2^3+...+2^{2003}\)
\(2A-A=\left(2+2^2+2^3+...+2^{2003}\right)-\left(1+2+2^2+....+2^{2002}\right)\)
\(A=2^{2003}-1\)
Mà: \(2^{2003}=2^{2003}\)
\(\Rightarrow2^{2003}-1< 2^{2003}\)
\(\Rightarrow A< B\)
Do số học sinh của lớp 6A xếp thành:
Hàng 2 vừa đủ, hàng 3 vừa đủ, hàng 4 vừa đủ, hàng 8 vừa đủ
Nên số học sinh của lớp 6A phải chia hết cho 2, 3, 4, 8
⇒ Số học sinh lớp 6A ∈ BC(2, 3, 4, 8)
Ta có: BCNN(2, 3, 4, 8) = 24
⇒ Số học sinh lớp 6A ∈ {0; 24; 48; 72; ...}
Mà số học sinh lớp 6A nằm trong khoảng từ 35 đến 60
Nên số học sinh lớp 6A là 48 học sinh
h, 3 + (-5) + 7 + (-9) + 11 +(-13) + 15 + (-17)
= 3 - 5 + 7 - 9 + 11 - 13 + 15 - 17
= (3 + 7) + (15 - 5) - (13 + 17) + (11- 9)
= 10 + 10 - 30 + 2
= 20 - 30 + 2
= -10 + 2
= -8
Sửa đề:
B = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + 2019 - 2021 - 2023 + 2025 + 2027
= (1 - 3 - 5 + 7) + (9 - 11 - 13 + 15) + ... + (2019 - 2021 - 2023 + 2025) + 2027
= 0 + 0 + ... + 0 + 2027
= 2027
A. 10; 12; 15
10 = 2.5
12 = 22.3
15 = 3.5
BCNN(10; 12; 15) = 22.3.5 = 60
B, 150; 25; 175;
150 =2.3.52
25 = 52
175 = 52.7
BCNN(150; 25; 175) = 2.3.52.7 = 1050
3\(x\) - 42 = 3.23
3\(x\) - 42 = 3.8
3\(x\) - 42 = 24
3\(x\) = 24 + 42
3\(x\) = 66
\(x\) = 66: 3
\(x\) = 22
3x - 42 = 3 . 23
3x - 42 = 3 . 8
3x - 42 = 24
3x = 24 + 42
3x = 66
x = 66 : 3
=> x = 22.
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+5^4+...+5^{2007}-5-5^2-5^3-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) \(S=5+5^2+5^3+...+5^{2006}\)
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(S=5\cdot\left(1+5^3\right)+5^2\cdot\left(1+5^3\right)+...+5^{2003}\cdot\left(1+5^3\right)\)
\(S=\left(1+5^3\right)\cdot\left(5+5^2+...+5^{2003}\right)\)
\(S=126\cdot\left(5+5^2+...+5^{2003}\right)\) ⋮ 126