1+1/3+1/5+...1/99
------------------------
1/1.99+1/3.97+...+1/99.1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: \(\dfrac{1}{4}-x=0\Rightarrow x=\dfrac{1}{4}\)
TH2: \(x+\dfrac{2}{5}=0\Rightarrow x=-\dfrac{2}{5}\)
Vậy \(x\in\left\{\dfrac{1}{4};-\dfrac{2}{5}\right\}\)
c) Trường hợp 1:
\(\dfrac{1}{4}-x=0\)
\(x=\dfrac{1}{4}-0\)
\(x=\dfrac{1}{4}\)
TH2:
\(x+\dfrac{2}{5}=0\)
\(x=0\)
Vậy x = 0; 0
\(F\left(x\right)=ax^3+4x\left(x^2-x\right)-4x+8=\left(a+4\right)x^3-4x^2-4x+8\)
\(G\left(x\right)=x^3-4x\left(bx+1\right)+c-3=x^3-4bx^2-4x+c-3\)
Để \(F\left(x\right)=G\left(x\right)\Rightarrow\left\{{}\begin{matrix}a+4=1\\4=4b\\c-3=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-3\\b=1\\c=11\end{matrix}\right.\)
[(-0,25) - 3/4 ] : (-5) - 3 . (-1/2)2 + 1/5
= [(-1/4) - 3/4 ] : (-5) - 3 . 1/4 + 1/5
= (-1) : (-5) - 3 . 1/4 + 1/5
= 1/5 - 3/4 + 1/5
= 4/20 - 15/20 + 4/20
= -7/20
\(\left[\left(-0,25\right)-\dfrac{3}{4}\right]:\left(-5\right)-3.\left(-\dfrac{1}{2}\right)^2+\dfrac{1}{5}\\ =\left[-\dfrac{1}{4}-\dfrac{3}{4}\right]:\left(-5\right)-3.\dfrac{1}{4}+\dfrac{1}{5}\\ =\left(-1\right):\left(-5\right)-\dfrac{3}{4}+\dfrac{1}{5}\\ =\dfrac{1}{5}-\dfrac{3}{4}+\dfrac{1}{5}\\ =-\dfrac{7}{20}\)
7/3 + [(-5/6) + (-2/3)]
= 7/3 + [(-5/6) + (-4/6)]
= 14/6 + (-9/6)
= 5/6
7/3 + [(-5/6) + (-2/3)]
= 7/3 + [(-5/6) + (-4/6)]
= 7/3 + (-9/6)
= 14/6 + (-9/6)
= 5/6
Ta có : \(Y=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2006^2}\right)\left(1-\dfrac{1}{2007^2}\right)\)
\(\Rightarrow Y=\dfrac{3}{4}.\dfrac{8}{9}.....\dfrac{2006^2-1}{2006^2}.\dfrac{2007^2-1}{2007^2}\)
\(\Rightarrow Y=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.....\dfrac{2006.2008}{2007.2007}=\dfrac{\left(1.2.....2006\right).\left(3.4.....2008\right)}{\left(2.3.....2007\right)\left(2.3.....2007\right)}=\dfrac{1.2018}{2007.2}=\dfrac{2018}{4014}\)
\(Y=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2007^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.....\dfrac{2007^2-1}{2007^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.....\dfrac{2006.2008}{2007^2}\)
\(=\dfrac{\left(1.3\right).\left(2.4\right).....\left(2006.2008\right)}{2^2.3^2.....2007^2}\)
\(=\dfrac{\left(1.2.3.....2006\right).\left(3.4.5.....2008\right)}{\left(2.3.4.....2007\right).\left(2.3.4.....2007\right)}\)
\(=\dfrac{1.2008}{2007.2}=\dfrac{1004}{2007}\)
1/4 = 0,25
Chiều rộng là:
0,25 x 2/5 = 0,1 ( km)
Chu vi là:
( 0,25 + 0,1 ) x 2 = 0,7 ( km)
Diện tích là:
0,25 x 0,1 = 0,025 ( km2 )
Đáp số:.................
1/4 = 0,25 Chiều rộng là:
0,25 x 2/5 = 0,1 ( km)
Chu vi là:
( 0,25 + 0,1 ) x 2 = 0,7 ( km)
Diện tích là:
0,25 x 0,1 = 0,025 ( km2 )
Đáp số: Cv: 0,7 km
S : 0,025 km2
Đặt \(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+...+\dfrac{1}{99.1}}\)
Đặt \(B=1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\) ; \(C=\dfrac{1}{1.99}+\dfrac{1}{3.97}+...+\dfrac{1}{99.1}\)
=> \(A=\dfrac{B}{C}\) (*)
Ta có : \(C=\dfrac{1}{1.99}+\dfrac{1}{3.97}+...+\dfrac{1}{99.1}\)
\(\Rightarrow100C=\dfrac{100}{1.99}+\dfrac{100}{3.97}+...+\dfrac{100}{99.1}\)
\(\Rightarrow100C=\dfrac{99+1}{1.99}+\dfrac{97+3}{3.97}+...+\dfrac{99+1}{99.1}\)
\(\Rightarrow100C=1+\dfrac{1}{99}+\dfrac{1}{3}+\dfrac{1}{97}+...+\dfrac{1}{99}+1\)
\(\Rightarrow100C=2.\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)\)
\(\Rightarrow50C=1+\dfrac{1}{3}+...+\dfrac{1}{99}\)=B , kết hợp (*)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{50C}{C}=50\)