\(x^2+6x-3=4x\sqrt{2x-1}\) Giải pt này ạ
Mình đã làm được theo cách bình phương 2 vế, đặt ẩn phụ, nhân liên hợp. Ngoài 3 cách này ra còn có cách nào khác các bạn làm hộ mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(x^2-5x+16=x^2-2.\frac{5}{2}+\frac{25}{4}+\frac{39}{4}=\left(x-\frac{5}{2}\right)^2+\frac{39}{4}>0\)
bình phương 2 vế ta được : \(x^2-5x+16=16\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
b, \(2\sqrt{4x-8}+\sqrt{9x-18}-\sqrt{36x-72}=4\)ĐK : x >= 2
\(\Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-6\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=4\Leftrightarrow x-2=16\Leftrightarrow x=18\left(tm\right)\)
Câu 3:
a) \(\sqrt{49-12\sqrt{5}}-\sqrt{49+12\sqrt{5}}=\sqrt{45-2.3\sqrt{5}.2+4}-\sqrt{45+2.3\sqrt{5}+4}\)
\(=\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}.2+2^2}-\sqrt{\left(3\sqrt{5}\right)^2+2.3\sqrt{5}.2+2^2}\)
\(=\sqrt{\left(3\sqrt{5}-2\right)^2}-\sqrt{\left(3\sqrt{5}+2\right)^2}\)
\(=\left|3\sqrt{5}-2\right|-\left|3\sqrt{5}+2\right|\)
\(=3\sqrt{5}-2-3\sqrt{5}-2\)
\(=-4\)
b) \(\sqrt{41-12\sqrt{5}}-\sqrt{41+12\sqrt{5}}=\sqrt{36-2.6.\sqrt{5}+5}-\sqrt{41+2.6.\sqrt{5}+5}\)
\(=\sqrt{6^2-2.6.\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{6^2+2.6.\sqrt{5}.+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(6-\sqrt{5}\right)^2}-\sqrt{\left(6+\sqrt{5}\right)^2}\)
\(=\left|6-\sqrt{5}\right|-\left|6+\sqrt{5}\right|\)
\(=6-\sqrt{5}-6-\sqrt{5}=-2\sqrt{5}\)
Bài 10 :
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm
b, Vì AE là phân giác ^A suy ra : \(\frac{AB}{AC}=\frac{BE}{CE}\Rightarrow\frac{CE}{AC}=\frac{BE}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CE}{AC}=\frac{BE}{AB}=\frac{BC}{AB+AC}=\frac{5}{7}\Rightarrow BE=\frac{5}{7}.3=\frac{15}{7}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
=> \(HE=BE-BH=\frac{15}{7}-\frac{9}{5}=\frac{12}{35}\)cm
Áp dụng định lí Pytago tam giác AHE vuông tại H
\(AE^2=AH^2+HE^2=\left(\frac{12}{5}\right)^2+\left(\frac{12}{35}\right)^2=\frac{288}{49}\Rightarrow AE=\frac{12\sqrt{2}}{7}\)cm
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow225=81+144\)* đúng *
Vậy tam giác ABC vuông tại A ( pytago đảo )
b, Xét tam giác ABC vuông tại A, đường cao AH
\(AH.BC=AC.AB\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12.9}{15}=\frac{36}{5}\)
c, Xét tam giác AHB vuông tại H, đường cao HE
Ta có : \(AH^2=AE.AB\)( hệ thức lượng (1))
Xét tam giác AHC vuông tại H, đường cao HI
Ta có : \(AH^2=AI.AC\)( hệ thức lượng (2))
Từ (1) ; (2) suy ra \(AE.AB=AI.AC\)
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
=1 nha