Chứng minh N là không số chính phương biết :
N=11+11^2+11^3+...+11^13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải:
ta xét 2 trường hợp: x lẻ và x chẵn
TH1: x chẵn
chẵn nhân (chẵn +1)+1
= chẵn nhân lẻ + 1
=chẵn +1
=lẻ
vì lẻ nên không chia hết cho 2
TH2:x lẻ
lẻ nhân (lẻ +1)+1
=lẻ nhân chẵn +1
=chẵn +1
= lẻ
vì lẽ nên không chia hết cho 2
vậy x nhân (x+1)+1 không chia hết cho 2
Chu vi nền nhà ăn: (27+15) x 2 = 84(m)
Diện tích nền nhà ăn: 27 x 15 = 405(m2)
Diện tích 1 viên gạch hình vuông cạnh 60cm:
60 x 60 = 3600(cm2)=0,36(m2)
Số viên gạch cần dùng lát nền nhà ăn:
405: 0,36=1125(viên)
ĐS: ....
-79.51 + 79.(-19) - 30.79
= -79.(51 + 19 + 30)
= -79.100
= -7900
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
a) -233 > -238
-235 > -240
-237 > -242
⇒ (-233) + (-235) + (-237) > (-238) + (-240) + (-242)
b) 41³⁰⁹ = (41³)¹⁰³ = 68921¹⁰³
Do 103 < 68921 nên 103¹⁰³ < 68921¹⁰³
⇒ 103¹⁰³ < 41³⁰⁹ (1)
Do 309 < 444 nên 41³⁰⁹ < 41⁴⁴⁴ (2)
Từ (1) và (2) suy ra 103¹⁰³ < 41⁴⁴⁴
c) 4³⁷⁵ = (4⁵)⁷⁵ = 1024⁷⁵
41¹⁵⁰ = (41²)⁷⁵ = 1681⁷⁵
Do 1024 < 1681 nên 1024⁷⁵ < 1681⁷⁵
⇒ 4³⁷⁵ < 41¹⁵⁰
Bài 1:
S1 = 1 + 2 + 22 + 23 + ... + 263
2.S1 = 2 + 22 + 23 + 24 + ... + 264
2S1 - S1 = (2 + 22 + 23 + 24 + ... + 264) - (1+2+22+22 + 23 + ... + 263)
S1 = 2 + 22 + 23 +...+ 264 - 1 - 2 - 22 - 23 - ... - 263
S1 = (2 - 2) + (22 - 22) + (23 - 23) + ... + (263 - 263) + 264 - 1
S1 = 264 - 1
Bài 2: S= 1 + 3 + 32 + ... + 32000
3.S = 3 + 32 + 33 + .... + 32001
3S - S = ( 3 + 32 + 33 + ... + 32001) - ( 1 + 3 + 32 + ... + 32000)
2S = 3 + 32 + 33 + ... + 32001 - 1 - 3 - 32 - ... - 3200
2S = (3 - 3) + (32 - 32) + (33 - 33) + (32000 - 32000) + (32001 -1)
2S = 32001 - 1
S = \(\dfrac{3^{2001}-1}{2}\)
H = 2 + 7 + 12 +...+ 212
Dãy số trên là dãy số cách đều với khoảng cách là: 7 - 2 = 5
Số số hạng của dãy số trên là: (212 - 2) : 5 + 1 = 43
H = (212 + 2) x 43 : 2 = 4601
H - 1 = 4601 - 1
H - 1 = 4602 ⋮ 2
CM H - 1 không chia hết cho 2 là điều không thể xảy ra
Lời giải:
Ta thấy $11^n$ với mọi số tự nhiên $n\geq 2$ thì sẽ chia hết cho $11^2$
$\Rightarrow 11^2+11^3+...+11^{13}\vdots 11^2$
Mà $11\not\vdots 11^2$
$\Rightarrow N=11+11^2+11^3+...+11^{13}\not\vdots 11^2$
Mà hiển nhiên $N\vdots 11$ (do mọi số hạng đều chia hết cho 11)
Do đó: $N$ chia hết cho $11$ nhưng không chia hết cho $11^2$
Suy ra $N$ không là số chính phương (đpcm)