giúp tớ mấy câu này vớiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) \(\sqrt[3]{512}=\sqrt[3]{8^3}=8\)
b) \(\sqrt[3]{\frac{-1}{125}}=\sqrt[3]{\left(-\frac{1}{5}\right)^3}=-\frac{1}{5}\)
c) \(\sqrt[3]{\frac{343a^3b^6}{-216}}=\sqrt[3]{\left(\frac{7ab^2}{-6}\right)^3}=\frac{7ab^2}{-6}=-\frac{7ab^2}{6}\)
d) \(\sqrt[3]{-64a^9b^9}=\sqrt[3]{\left(-2a^3b^3\right)^3}=-2a^3b^3\)
2. a) \(\frac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
\(=\sqrt[3]{\frac{135}{5}}-\sqrt[3]{54.4}\)
\(=\sqrt[3]{27}-\sqrt[3]{216}\)
\(=\sqrt[3]{3^3}-\sqrt[3]{6^3}\)
\(=3-6=-3\)
b) \(\left(\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}\right)\left(\sqrt[3]{5}+\sqrt[3]{2}\right)\)
\(=\sqrt[3]{25}.\sqrt[2]{5}+\sqrt[3]{25}.\sqrt[3]{2}-\sqrt[3]{10}.\sqrt[3]{5}-\sqrt[3]{10}.\sqrt[3]{2}+\sqrt[3]{4}.\sqrt[3]{5}+\sqrt[3]{4}.\sqrt[3]{2}\)
\(=\sqrt[3]{25.5}+\sqrt[3]{25.2}-\sqrt[3]{10.5}-\sqrt[3]{10.2}+\sqrt[3]{4.5}+\sqrt[3]{4.2}\)
\(=\sqrt[3]{125}+\sqrt[3]{50}-\sqrt[3]{50}-\sqrt[3]{20}+\sqrt[3]{20}+\sqrt[3]{8}\)
\(=\sqrt[3]{5^3}+\sqrt[3]{2^3}\)
\(=5+2=7\)
a, Để hàm số đồng biến khi \(2m-1>0\Leftrightarrow m>\frac{1}{2}\)
Để hàm số nghịch biến khi \(2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
b, Để đths y = (2m-1)x đi qua điểm A(1;2) <=> \(2m-1=2\Leftrightarrow m=\frac{3}{2}\)
c, Để đths y = (2m-1)x đi qua điểm B(1;-2) <=> \(2m-1=-2\Leftrightarrow m=-\frac{1}{2}\)
d, tự làm tự vẽ nhé
Gọi lúc đầu xí nghiệp dự định mỗi ngày may \(x\)bộ \(x>0\).
Xí nghiệp sẽ hoàn thành sau số ngày là: \(\frac{150}{x}\)(ngày)
Thực tế mỗi ngày may được số bộ là \(x+5\)(bộ)
Hoàn thành sau số ngày là: \(\frac{150}{x}-1\)(ngày).
Ta có: \(\left(x+5\right)\left(\frac{150}{x}-1\right)=150\)
\(\Leftrightarrow\frac{750}{x}-x-5=0\)
\(\Rightarrow-x^2-5x+750=0\)
\(\Leftrightarrow\left(x-25\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=25\left(tm\right)\\x=-30\left(l\right)\end{cases}}\)
Vậy lúc đầu xí nghiệp dự định mỗi ngày may \(30\)bộ.
Ta có:
\(x^4-3x^3+4x^2+16=12\sqrt[3]{3x^2-4}\)
\(\Leftrightarrow x^4-3x^3+4x^2-12x+16=12\left(\sqrt[3]{3x^2-4}-x\right)\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+x+4\right)+\frac{12\left(x-2\right)^2\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left[x^2+x+4+\frac{12\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}\right]=0\)
\(\Leftrightarrow x-2=0\)(vì \(x^2+x+4+\frac{12\left(x+1\right)}{\sqrt[3]{\left(3x^2-4\right)^2}+\sqrt[3]{3x^2-4}.x+x^2}>0\))
\(\Leftrightarrow x=2\).
\(5\sqrt{x-1}-\sqrt{36x-36}+\sqrt{9x-9}=\sqrt{8x+12}\)ĐK : x >= 1
\(\Leftrightarrow5\sqrt{x-1}-6\sqrt{x-1}+3\sqrt{x-1}=2\sqrt{2x+3}\)
\(\Leftrightarrow2\sqrt{x-1}=2\sqrt{2x+3}\Leftrightarrow\sqrt{x-1}=\sqrt{2x+3}\)
\(\Leftrightarrow x-1=2x+3\Leftrightarrow x=-4\)( ktm )
Vậy pt vô nghiệm
điều kiện: \(x\ge\frac{1}{2}\)
ta có \(x^2+8x-4-4x\sqrt{2x-1}=2x-1\)
\(\Leftrightarrow\left(x-2\sqrt{2x-1}\right)^2=2x-1\Leftrightarrow\orbr{\begin{cases}x-2\sqrt{2x-1}=\sqrt{2x-1}\\x-2\sqrt{2x-1}=-\sqrt{2x-1}\end{cases}}\)
\(\) hay \(\orbr{\begin{cases}x=3\sqrt{2x-1}\\x=\sqrt{2x-1}\end{cases}}\)
TH1: \(x=3\sqrt{2x-1}\Leftrightarrow x^2=18x-9\Leftrightarrow x=9\pm6\sqrt{2}\)
TH2: \(x=\sqrt{2x-1}\Leftrightarrow x^2=2x-1\Leftrightarrow x=1\)
( về cơ bản nó không khác cách e đặt ẩn phụ là mấy, chỉ có điều e liên hợp kiểu gì nhỉ)
a, Ta có : \(x^2-5x+16=x^2-2.\frac{5}{2}+\frac{25}{4}+\frac{39}{4}=\left(x-\frac{5}{2}\right)^2+\frac{39}{4}>0\)
bình phương 2 vế ta được : \(x^2-5x+16=16\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow x=0;x=5\)
b, \(2\sqrt{4x-8}+\sqrt{9x-18}-\sqrt{36x-72}=4\)ĐK : x >= 2
\(\Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-6\sqrt{x-2}=4\)
\(\Leftrightarrow\sqrt{x-2}=4\Leftrightarrow x-2=16\Leftrightarrow x=18\left(tm\right)\)
3. a) \(M=3x-\sqrt[3]{27x^3+27x^2+9x+1}\)
\(=3x-\sqrt[3]{\left(3x\right)^3+3.\left(3x\right)^2.1+3.\left(3x\right).1^2+1}\)
\(=3x-\sqrt[3]{\left(3x+1\right)^3}\)
\(=3x-\left(3x+1\right)\)
\(=-1\)
b) \(N=\sqrt[3]{8x^3+12x^2+6x+1}-\sqrt[3]{x^3}\)
\(=\sqrt[3]{\left(2x\right)^3+3.\left(2x\right)^2.1+3.\left(2x\right).1^2+1^3}-x\)
\(=\sqrt[3]{\left(2x+1\right)^3}-x\)
\(=2x+1-x\)
\(=x+1\)
4. a) \(\sqrt[3]{\left(4-2\sqrt{3}\right)\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^2\left(\sqrt{3}-1\right)}\)
\(=\sqrt[3]{\left(\sqrt{3}-1\right)^3}\)
\(=\sqrt{3}-1\)
b) \(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt[3]{3\sqrt{3}+3.\left(\sqrt{3}\right)^2.1+3.\sqrt{3}.1^2+1}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt[3]{\left(\sqrt{3}+1\right)^3}}\)
\(=\sqrt{3+\sqrt{3}+\sqrt{3}+1}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}+1\)(do \(\sqrt{3};1>0\))