làm từ câu c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{cases}}\Leftrightarrow\hept{\begin{cases}xy-5x+3y-15=xy\\xy+5x-2y-10=xy\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-5x+3y=15\\5x-2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}y=25\\5x-2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=12\\y=25\end{cases}}\)
ĐK : \(\hept{\begin{cases}x\ne1\\y\ne-1\end{cases}}\)
\(\hept{\begin{cases}\frac{x+1}{x-1}=\frac{y+3}{y+1}\\3x+2y=0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=\left(x-1\right)\left(y+3\right)\\3x+2y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy+x+y+1=xy+3x-y-3\\3x+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x-2y=4\\3x+2y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}5x=4\\3x+2y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{5}\\y=-\frac{6}{5}\end{cases}\left(tm\right)}\)
\(cos^4a-sin^4a+2sin^2a\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+2sin^2a\)
\(=cos^2a\left(cos^2a+sin^2a\right)+2sin^2a\)
Bài làm này chắc ổn hơn bài làm trước ✔
\(cos^4a-sin^4a+2sin^2a\)
\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+2sin^2a\)
\(=\left(cos^2a-sin^2a\right)1+2sin^2a\)
\(=cos^2a-sin^2a+2sin^2a\)
\(=cos^2a+sin^2a\)
\(=1\)
A B C D
Ta có :
\(\hept{\begin{cases}AC^2=AD^2+DC^2\\BD^2=AD^2+AB^2\end{cases}}\) vì \(CD>AB\Rightarrow AC>BD\)
b. ta có \(AC^2-BD^2=\left(AD^2+DC^2\right)-\left(AD^2+AB^2\right)=CD^2-AB^2\)
A B C D
Ta có : \(\hept{\begin{cases}BD^2=BA^2+AD^2\\BC^2=\left(DC-AB\right)^2+AD^2\end{cases}\Leftrightarrow\hept{\begin{cases}225=BA^2+AD^2\\169=\left(14-AB\right)^2+AD^2\end{cases}}}\)
lấy hiệu ta có : \(56=28AB-196\Leftrightarrow AB=9\Rightarrow AD=\sqrt{225-9^2}=12\)
Diện tích hình thang là :\(\frac{1}{2}\left(AB+CD\right)\times AD=\frac{1}{2}\left(9+14\right)\times12=138cm^2\)
ta có :
\(P=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}+1-\sqrt{xy}}{1-\sqrt{xy}}\right):\left(\frac{\sqrt{xy}-1-\sqrt{xy}-\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
\(=\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{x}+1}{1-\sqrt{xy}}\right):\left(\frac{1+\sqrt{x}}{1-\sqrt{xy}}-\frac{1+\sqrt{x}}{\sqrt{xy}+1}\right)\)
\(=\left(\frac{1}{\sqrt{xy}+1}+\frac{1}{1-\sqrt{xy}}\right):\left(\frac{1}{1-\sqrt{xy}}-\frac{1}{\sqrt{xy}+1}\right)\)
\(=\frac{2}{1-xy}:\text{}\frac{2\sqrt{xy}}{1-xy}=\frac{1}{\sqrt{xy}}\)
b.ta có \(P=\frac{1}{\sqrt{xy}}\le\frac{\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)^2}{4}=\frac{36}{4}=9\)
Vậy GTLN của P =9
\(C=\sqrt{x}+\sqrt{y}+\sqrt{x^2y}+\sqrt{xy^2}\)
\(C=\sqrt{x}\left(\sqrt{xy}+1\right)+\sqrt{y}\left(\sqrt{xy}+1\right)\)
\(C=\left(\sqrt{xy}+1\right)\left(\sqrt{x}+\sqrt{y}\right)\)
\(D=x+2\sqrt{xy}+y-4\)
\(D=\left(\sqrt{x}+\sqrt{y}\right)^2-4\)
\(D=\left(\sqrt{x}+\sqrt{y}-4\right)\left(\sqrt{x}+\sqrt{y}+4\right)\)
\(E=x+\sqrt{x}+\frac{1}{4}-\frac{49}{4}\)
\(E=\left(\sqrt{x}+\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)
\(E=\left(\sqrt{x}+\frac{1}{2}-\frac{7}{2}\right)\left(\sqrt{x}+\frac{1}{2}+\frac{7}{2}\right)\)
\(E=\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)\)
\(F=2a-5\sqrt{ab}+3b\)
\(F=2a-2\sqrt{ab}-3\sqrt{ab}+3b\)
\(F=2\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)-3\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)\)
\(F=\left(2\sqrt{a}-3\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)