Bài 13 . Cho tam giác ABC vuông góc ở A , AH Là đường cao { H thuộc BC }
a) Cho biết BH = 4 CH = 2 Tính AB; AC
b) Vẽ HD vuông góc AB tại D, HE vuông góc AC tại E
Chứng minh rằng:BD = BC. cos B; DE = BD.CE.BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10 :
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=25-9=16\Rightarrow AC=4\)cm
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=\frac{12}{5}\)cm
b, Vì AE là phân giác ^A suy ra : \(\frac{AB}{AC}=\frac{BE}{CE}\Rightarrow\frac{CE}{AC}=\frac{BE}{AB}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CE}{AC}=\frac{BE}{AB}=\frac{BC}{AB+AC}=\frac{5}{7}\Rightarrow BE=\frac{5}{7}.3=\frac{15}{7}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{9}{5}\)cm
=> \(HE=BE-BH=\frac{15}{7}-\frac{9}{5}=\frac{12}{35}\)cm
Áp dụng định lí Pytago tam giác AHE vuông tại H
\(AE^2=AH^2+HE^2=\left(\frac{12}{5}\right)^2+\left(\frac{12}{35}\right)^2=\frac{288}{49}\Rightarrow AE=\frac{12\sqrt{2}}{7}\)cm
a, Ta có : \(BC^2=AB^2+AC^2\Rightarrow225=81+144\)* đúng *
Vậy tam giác ABC vuông tại A ( pytago đảo )
b, Xét tam giác ABC vuông tại A, đường cao AH
\(AH.BC=AC.AB\Rightarrow AH=\frac{AB.AC}{BC}=\frac{12.9}{15}=\frac{36}{5}\)
c, Xét tam giác AHB vuông tại H, đường cao HE
Ta có : \(AH^2=AE.AB\)( hệ thức lượng (1))
Xét tam giác AHC vuông tại H, đường cao HI
Ta có : \(AH^2=AI.AC\)( hệ thức lượng (2))
Từ (1) ; (2) suy ra \(AE.AB=AI.AC\)
a. ta có \(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13cm\)
b. ta có \(sinB=\frac{AC}{BC}=\frac{12}{13},cosB=\frac{BA}{BC}=\frac{5}{13},tanB=\frac{AC}{AC}=\frac{12}{5},cotB=\frac{1}{tanB}=\frac{5}{12}\)
ta có \(sinC=\frac{5}{13}\Rightarrow C\simeq23^0\)
ta có a nhọn nên sin, cos ,tan và cotg của a đều là các số dương
nên ta có :
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\frac{4}{9}}=\frac{\sqrt{5}}{3}\)
\(tana=\frac{sina}{cosa}=\frac{2}{\sqrt{5}},cotga=\frac{1}{tana}=\frac{\sqrt{5}}{2}\)