K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi số ghế của mỗi dãy ban đầu là x(ghế)

(Điều kiện: \(x\in Z^+\))

Số dãy ghế ban đầu là \(\dfrac{120}{x}\left(dãy\right)\)

Số ghế ở mỗi dãy lúc sau là x+5(ghế)

Số dãy ghế lúc sau là \(\dfrac{120+72}{x+5}=\dfrac{192}{x+5}\left(dãy\right)\)

Trường phải kê thêm 3 dãy ghế nên ta có:

\(\dfrac{192}{x+5}-\dfrac{120}{x}=3\)

=>\(\dfrac{64}{x+5}-\dfrac{40}{x}=1\)

=>\(\dfrac{64x-40x-200}{x\left(x+5\right)}=1\)

=>\(x\left(x+5\right)=24x-200\)

=>\(x^2+5x-24x+200=0\)

=>\(x^2-19x+200=0\)

=>\(x\in\varnothing\)

Vậy: Không có số liệu nào thỏa mãn yêu cầu đề bài

17 tháng 5

Giải:

Gọi số ghế lúc đầu của mỗi dãy là: \(x\) (ghế); \(x\) \(\in\) N*

Số dãy ghế ban đầu là: 120 : \(x\) = \(\dfrac{120}{x}\)

Tổng số ghế lúc sau là: 120 + 72  = 192 (ghế)

Số dãy ghế lúc sau là: \(\dfrac{192}{x+5}\) 

Theo bài ra ta có: \(\dfrac{192}{x+5}-\dfrac{120}{x}\) = 3

                              \(\dfrac{64}{x+5}-\dfrac{40}{x}=1\)

                      64\(x\) - 40\(x\) - 200 = .\(x\).(\(x\) + 5)

                      24\(x\)  - 200 = \(x^2\) + 5\(x\)

                      \(x^2\) + 5\(x\) - 24\(x\) + 200 = 0

                       \(x^2\) + (5\(x-24x\)) + 200 = 0

                       \(x^2\) - 19\(x\) + 200 = 0 

                       \(x^2\) - 2.\(\dfrac{19}{2}\)\(x\) +  \(\dfrac{361}{4}\) + \(\dfrac{439}{4}\) = 0

                        (\(x-\dfrac{19}{2}\))2 + \(\dfrac{439}{4}\) = 0

                         (\(x-\dfrac{19}{2}\))2 ≥ 0 \(\forall\) \(x\)

            ⇒ (\(x-\dfrac{19}{2}\))2 + \(\dfrac{439}{2}\) ≥ \(\dfrac{439}{2}\) > 0 ∀ \(x\)

Vậy \(x\in\) \(\varnothing\)

Kết luận không có số ghế ban đầu của mỗi dãy nào thỏa mãn đề bài.  

                     

 

\(x^2+x-2\)

\(=x^2+x+\dfrac{1}{4}-\dfrac{9}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)

=>\(x=-\dfrac{1}{2}\)

a: Sửa đề: ΔAHB~ΔBCD

Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)

Do đó; ΔAHB~ΔBCD

b: ΔBCD vuông tại C

=>\(BC^2+CD^2=BD^2\)

=>\(BD=\sqrt{12^2+9^2}=15\left(cm\right)\)

ΔAHB~ΔBCD

=>\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\)

=>\(\dfrac{AH}{9}=\dfrac{12}{15}=\dfrac{4}{5}\)

=>\(AH=4\cdot\dfrac{9}{5}=7,2\left(cm\right)\)

c: ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HB=\sqrt{12^2-7,2^2}=9,6\left(cm\right)\)

ΔAHB vuông tại H

=>\(S_{HAB}=\dfrac{1}{2}\cdot HA\cdot HB=\dfrac{1}{2}\cdot7,2\cdot9,6=4,8\cdot7,2=34,56\left(cm^2\right)\)

`#3107.101107`

Hình chóp là tam giác đều hay tứ giác đều nhỉ? Mình làm mẫu 1 cái nhé

Diện tích của mặt đáy hình chóp tứ giác (tam giác) đều:

\(\text{S}_{\text{xq}}=a^2=10^2=100\left(\text{cm}^2\right)\)

(\(\text{S}_{\text{xq}}=\dfrac{1}{2}\cdot a\cdot h=\dfrac{1}{2}\cdot5\cdot10=25\left(\text{cm}^2\right)\))

Thể tích của hình chóp tứ giác (tam giác) đều: 

\(\text{V}_{\text{hình chóp}}=\dfrac{1}{3}\cdot s\cdot h=\dfrac{1}{3}\cdot100\cdot5\approx166,7\left(\text{cm}^3\right)\)

(\(\text{V}_{\text{hình chóp}}=\dfrac{1}{3}\cdot s\cdot h=\dfrac{1}{3}\cdot25\cdot10\approx83,3\left(\text{cm}^3\right).\))

4
456
CTVHS
16 tháng 5

Một phân thức đại số (hay nói gọn là phân thức) là một biểu thức có dạng \(\dfrac{A}{B}\), trong đó \(A,B\) là những đa thức và \(B\ne0\) 

\(A\) được gọi là tử thức (hay tử) , \(B\) được gọi là mẫu thức (hay mẫu)

\(\Rightarrow\dfrac{2+3}{x}\) là phân thức đại số.

Có nha 

NV
15 tháng 5

\(g\left(-1\right)=\left(-1\right)^2-3.\left(-1\right)+1=5\)

\(g\left(0\right)=0^2-3.0+1=1\)

\(g\left(1\right)=1^2-3.1+1=-1\)

\(g_{\left(-1\right)}=\left(-1\right)^2-3\cdot\left(-1\right)+1=1+3+1=5\)

\(g_{\left(0\right)}=0^2-3\cdot0+1=0-0+1=1\)

\(g_{\left(1\right)}=1^2-3\cdot1+1=1-3+1=-1\)

a: Xét ΔEHP vuông tại E và ΔFHN vuông tại F có

\(\widehat{EHP}=\widehat{FHN}\)(hai góc đối đỉnh)

Do đó: ΔEHP~ΔFHN

b: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có

\(\widehat{EMN}\) chung

Do đó: ΔMEN~ΔMFP

=>\(\dfrac{ME}{MF}=\dfrac{MN}{MP}\)

=>\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)

=>\(ME\cdot MP=MF\cdot MN\)

Xét ΔMEF và ΔMNP có

\(\dfrac{ME}{MN}=\dfrac{MF}{MP}\)

\(\widehat{EMF}\) chung

Do đó: ΔMEF~ΔMNP

c: Xét tứ giác MFHE có \(\widehat{MFH}+\widehat{MEH}=90^0+90^0=180^0\)

nên MFHE là tứ giác nội tiếp

Xét tứ giác NFHD có \(\widehat{NFH}+\widehat{NDH}=90^0+90^0=180^0\)

nên NFHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EMH}\)(MFHE nội tiếp)

\(\widehat{DFH}=\widehat{DNH}\)(NFHD nội tiếp)

mà \(\widehat{EMH}=\widehat{DNH}\left(=90^0-\widehat{MPD}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Vì FH\(\perp\)FN và FH là phân giác của góc EFD và \(\widehat{EFD};\widehat{DFK}\) là hai góc kề bù

nên FN là phân giác của góc DFK

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC~ΔHAC

b: ΔABC~ΔHBA

=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

=>\(BA^2=BH\cdot BC\)

c: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

Xét ΔCAB có CD là phân giác

nên \(\dfrac{AD}{AC}=\dfrac{BD}{BC}\)

=>\(\dfrac{AD}{24}=\dfrac{BD}{30}\)

=>\(\dfrac{AD}{4}=\dfrac{BD}{5}\)

mà AD+BD=18cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{4}=\dfrac{BD}{5}=\dfrac{AD+BD}{4+5}=\dfrac{18}{9}=2\)

=>\(AD=4\cdot2=8\left(cm\right)\)

NV
15 tháng 5

Gọi chiều rộng khu vườn là x (m) với x>0

Chiều dài khu vườn là: \(\dfrac{7}{4}x\) (m)

Diện tích khu vườn là: \(x.\dfrac{7}{4}x=\dfrac{7}{4}x^2\) \(\left(m^2\right)\)

Do diện tích khu vườn bằng 1792 \(m^2\) nên ta có pt:

\(\dfrac{7}{4}x^2=1792\)

\(\Leftrightarrow x^2=1024\)

\(\Leftrightarrow x=32\left(m\right)\)

Chiều dài khu vườn là: \(\dfrac{7}{4}.32=56\left(m\right)\)

Chu vi khu vườn là: \(2.\left(32+56\right)=176\left(m\right)\)

29 tháng 5

Phải có hình chứ em?