2x+5=33:32+23.22
tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số cần tìm là $a$. Ta có:
$a-3\vdots 10; a-5\vdots 12; a-8\vdots 15$
$\Rightarrow a-3+10\vdots 10; a-5+12\vdots 12; a-8+15\vdots 15$
$\Rightarrow a+7\vdots 10,12,15$
$\Rightarrow a+7=BC(10,12,15)$
$\Rightarrow a+7\vdots BCNN(10,12,15)$
$\Rightarrow a+7\vdots 60$
$\Rightarrow a=60k-7$ với $k$ tự nhiên.
Vì $a=60k-7\vdots 19$
$\Rightarrow 60k-7-57k\vdots 19$
$\Rightarrow 3k-7\vdots 19$
$\Rightarrow 3k+12\vdots 19\Rightarrow 3(k+4)\vdots 19$
$\Rightarrow k+4\vdots 19$ nên $k=19m-4$ với $m$ tự nhiên.
Khi đó: $a=60k-7=60(19m-4)-7=1140m - 247$ với $m$ là stn.
a.b = 366; ƯCLN (a; b) = 4
Vì ƯCLN(a; b) = 4 nên a = 4.m; b = 4.n (m;n) = 1; m,n \(\in\) N
a.b = 4.m.4.n
Theo bài ra ta có: 4.m.4.n = 366
m.n = \(\dfrac{366}{4.4}\)
m.n = \(\dfrac{183}{2}\) (loại)
⇒ m; n \(\in\) \(\varnothing\)
Kết luận: Không có hai số tự nhiên nào thỏa mãn đề bài
Lời giải:
a.
Chu vi hình chữ nhật: $2(4+6)=20$ (cm)
Diện tích hình chữ nhật: $4.6=24$ (cm2)
b. Vì $100=10.10$ nên độ dài cạnh sân chơi là $10$ m.
Chu vi sân chơi là: $10.4=40$ (m)
a) Bốn số thuộc tập L:
3; 5; 7; 9
Hai số không thuộc tập L:
2; 4
b) L = {x | x ∈ ℕ và x là số lẻ}
A = 14.820 - 47.715
A = 7.(2.820 - 47.714) ⋮ 7
B = 2.49.8 + 91
B = 2.7.7.8 + 7.13
B = 7.(2.7.8 + 13) ⋮ 7
=2A=2(1+3+3^2+...+3^100)
=2A=3+3^2+3^3+...+3^101
=2xA-A=(3+3^2+3^3+....+3^101)-(1+3+3^2+3^3+...+3^100)
=>A=3^101-1 (ta dùng phương pháp khử)
Vậy a=3^101-1
\(A=1+3^1+3^2+3^3+...+3^{2021}\\=(1+3^1)+(3^2+3^3)+(3^4+3^5)...+(3^{2020}+3^{2021})\\=4+3^2\cdot(1+3)+3^4\cdot(1+3)+...+3^{2020}\cdot(1+3)\\=4+3^2\cdot4+3^4\cdot4+...+3^{2020}\cdot4\\=4\cdot(1+3^2+3^4+...+3^{2020})\)
Vì \(4\cdot(1+3^2+3^4+...+3^{2020})\vdots4\)
nên \(A\vdots4\)
\(\text{#}Toru\)
thank you bạn character debate nha, ai vô trả lời thì cảm ơn nhiều!!
2x + 5 = 3³ : 3² + 2³.2²
2x + 5 = 3 + 2⁵
2x + 5 = 3 + 32
2x + 5 = 35
2x = 35 - 5
2x = 30
x = 30 : 2
x = 15