ai giúp mình câu này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A, đường cao A
cosB = \(\frac{AB}{BC}\Rightarrow\frac{\sqrt{3}}{2}=\frac{AB}{12}\Rightarrow AB=\frac{12\sqrt{3}}{2}=6\sqrt{3}\)m
Theo Pytago tam giác ABC vuông tại A
\(AC=\sqrt{BC^2-AB^2}=\sqrt{144-108}=6\)m
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{36\sqrt{3}}{12}=3\sqrt{3}\)m
a, \(\sqrt{x+4\sqrt{x-4}}=5\)ĐK : x> = 4
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=5\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+4\right)^2}=5\Leftrightarrow\sqrt{x-4}+4=5\)
\(\Leftrightarrow\sqrt{x-4}=1\Leftrightarrow x=5\)
b, \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=2\)ĐK : x >= 1
\(\Leftrightarrow x+2\sqrt{x-1}+\sqrt{x^2-4\left(x-1\right)}+x-2\sqrt{x-1}=4\)
\(\Leftrightarrow2x+\sqrt{x^2-4x+4}=4\Leftrightarrow\left|x+2\right|=4-2x\)
ĐK : \(-2x\ge-4\Leftrightarrow x\le2\Rightarrow1\le x\le2\)
TH1 : \(x+2=4-2x\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(tm)
TH2 : \(x+2=2x-4\Leftrightarrow x=6\)(ktm)
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
\(\Leftrightarrow2x\sqrt{1-y^2}+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
\(\Leftrightarrow6-2x\sqrt{1-y^2}-2y\sqrt{2-z^2}-2z\sqrt{3-x^2}=0\)
\(\Leftrightarrow\left(x^2-2x\sqrt{1-y^2}+\left(1-y^2\right)\right)+\left(y^2-2y\sqrt{2-z^2}+\left(2-z^2\right)\right)+\left(z^2-2z\sqrt{3-x^2}+\left(3-x^2\right)\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
\(\Leftrightarrow x=\sqrt{1-y^2};y=\sqrt{2-z^2};z=\sqrt{3-x^2}\)
\(\Leftrightarrow x=1,y=0,z=\sqrt{2}\)
\(\sqrt{5x^2+10x+1}=7-2x-x^2\)
\(5x^2+10x+1=49+4x^2+x^4-28x+4x^3-14x^2\)
\(x^4+4x^3-15x^2-38x+48=0\)
\(x^4+5x^3-10x^2-48x-x^3-5x^2+10x-48=0\)
\(x\left(x^3+5x^2-10x-48\right)-\left(x^3+5x^2-10x-48\right)=0\)
\(\left(x-1\right)\left(x^3+5x^2-10x-48\right)=0\)
\(\left(x-1\right)\left(x^3+3x^2+2x^2+6x-16x-48\right)=0\)
\(\left(x-1\right)\left(x+3\right)\left(x^2+2x-16\right)=0\)
\(x_1=1\left(TM\right)\)
\(x_2=-3\left(TM\right)\)
giải pt \(x^2+2x-16=0\)
\(\sqrt{\Delta}=2^2-4.\left(-16\right)=2\sqrt{17}\)
\(\orbr{\begin{cases}x_3=\frac{-2+2\sqrt{17}}{2}=\sqrt{17}-1\left(TM\right)\\x_4=-\sqrt{17}-1\left(TM\right)\end{cases}}\)
Bài 3: Cho hàm số y=(m-1)x + 2m. Xác định m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ = 5
Để đths trên là hầm bậc nhất khi m - 1 \(\ne\)0 <=> \(m\ne1\)
đths y = (m-1)x + 2m cắt trục hoành taị điểm có hoành độ bằng 5
Thay x = 5 ; y = 0 ta được : \(5\left(m-1\right)+2m=0\Leftrightarrow7m-5=0\Leftrightarrow m=\frac{5}{7}\)( tmđk )
a, Với \(x\ge0;x\ne1\)
\(B=\frac{1}{\sqrt{x}-1}=2\Rightarrow2\sqrt{x}-2=1\Leftrightarrow2\sqrt{x}-3=0\Leftrightarrow x=\frac{9}{4}\)
b, Ta có : \(A.B=\frac{x+3}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=\frac{x+3}{x-1}=\frac{x-1+4}{x-1}=1+\frac{4}{x-1}\)
\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
x - 1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 2 | 0 | 3 | -1 | 5 | -3 |
c, Ta có : \(A=\frac{x+3}{\sqrt{x}+1}\le3\Leftrightarrow\frac{x+3}{\sqrt{x}+1}-3\le0\)
\(\Leftrightarrow\frac{x-3\sqrt{x}}{\sqrt{x}+1}\le0\Rightarrow\sqrt{x}-3\le0\Leftrightarrow x\le9\)
Kết hợp với đk vậy 0 =< x =< 9
a, bạn tự vẽ nhé
b, Để hàm số nghịch biến khi m < 0
c, đths y = mx + 2m - 1 cắt trục tung tại điểm có tung độ bằng 3
Thay x = 0 ; y = 3 ta được : \(2m-1=3\Leftrightarrow m=2\)
d, đths y = mx + 2m - 1 cắt trục hoành tại điểm có hoành độ bằng -3
Thay x = -3 ; y = 0 ta được : \(-3m+2m-1=0\Leftrightarrow-m-1=0\Leftrightarrow m=-1\)
bổ sung hộ mình nhé
( dòng đầu tiên ) Để đths trên là hàm bậc nhất khi \(m\ne0\)
Ta có
\(\widehat{ACH}=180^o-\left(\widehat{AHC}+\widehat{HAC}\right)=180^o-\left(90^o+30^o\right)=60^o\)
\(\Rightarrow\cos\widehat{ACH}=\frac{CH}{AC}\Rightarrow\cos60^o=\frac{20}{AC}\Rightarrow AC=\frac{20}{\cos60^o}=40m\)
Xét tg vuông AHC có
\(AH=\sqrt{AC^2-CH^2}=20\sqrt{3}m\)
Xét tg vuông BHC có
\(\widehat{HCB}=45^o\Rightarrow\widehat{HBC}=45^o\Rightarrow\widehat{HCB}=\widehat{HBC}\Rightarrow\Delta HBC\) cân tại H => HC=HB=20 m
\(\Rightarrow AB=AH-HB=20\sqrt{3}-20=20\left(\sqrt{3}-1\right)m\)