Giải giúp mình với ạ, bạn nào giải nhanh mình tick nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh
\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
\(\Leftrightarrow\frac{2}{2\sqrt{2}+\sqrt{2}+\sqrt{6}}+\frac{1}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
\(\Leftrightarrow\frac{2\left(3\sqrt{2}-\sqrt{6}\right)}{\left(3\sqrt{2}+\sqrt{6}\right)\left(3\sqrt{2}-\sqrt{6}\right)}+\frac{1}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
\(\Leftrightarrow\frac{6\sqrt{2}-2\sqrt{6}}{18-6}+\frac{1}{-\sqrt{3}}\)
\(\Leftrightarrow\frac{3\sqrt{2}-\sqrt{6}}{6}-\frac{\sqrt{3}}{3}\)
\(\Leftrightarrow\frac{3\sqrt{2}-\sqrt{6}-2\sqrt{3}}{6}\)
Ps : anh gửi em nhé, có chỗ nào không hiểu thì hỏi anh nhé. Nhớ k :33
# Aeri #
\(\frac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{1}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
\(\frac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\frac{1}{-\sqrt{3}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}-\frac{1}{\sqrt{3}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}-\frac{1}{\sqrt{3}}\)
\(=\frac{\sqrt{2}}{2+\sqrt{3}+1}-\frac{1}{\sqrt{3}}\)
\(=\frac{\sqrt{2}}{3+\sqrt{3}}-\frac{1}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}\left(\sqrt{3}+1\right)}-\frac{1}{\sqrt{3}}\)
\(=\frac{\sqrt{2}-\sqrt{3}-1}{3+\sqrt{3}}\)
Ta có :
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}=\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}=\sqrt{1}=1\)
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}=\sqrt{\frac{\left(2-\sqrt{3}\right)^2}{4-3}}+\sqrt{\frac{\left(2+\sqrt{3}\right)^2}{4-3}}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
\(\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{2.2+2.\left(-\sqrt{3}\right)-\sqrt{3}.2-\sqrt{3}.\left(-\sqrt{3}\right)}{2^2-\left(\sqrt{3}\right)^2}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{4-2\sqrt{3}-2\sqrt{3}-\sqrt{3}.\left(-\sqrt{3}\right)}{4-3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{\frac{4-2\sqrt{3}-2\sqrt{3}+\left(\sqrt{3}\right)^1\left(\sqrt{3}\right)^1}{4-3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{4-2\sqrt{3}-2\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow\sqrt{7-4\sqrt{3}}+\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{\frac{4+2\sqrt{3}+\sqrt{3}.2+\sqrt{3.3}}{4-3}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{4+2\sqrt{3}+2\sqrt{3}+\sqrt{9}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow2-\sqrt{3}+\sqrt{3}+2\)
\(\Leftrightarrow2+2\)
\(\Leftrightarrow4\)
PS : bài này dài lắm, có đọan nào không hiểu hỏi mình nhé. Nhớ k để ủng hộ ạ :33
# Aeri #
bạn xem lại bài 1 nhé
Bài 2 :
Ta có : \(\frac{AB}{BC}=\frac{3}{5}\Rightarrow AB=\frac{3}{5}BC\)
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2\Rightarrow AC^2=BC^2-AB^2=BC^2-\left(\frac{3}{5}BC\right)^2\)
\(\Leftrightarrow400=\frac{16}{25}BC^2\Leftrightarrow BC^2=625\Rightarrow BC=25\)cm
\(\Rightarrow AB=\frac{3}{5}BC=\frac{3}{5}.25=15\)cm
Chu vi tam giác ABC là \(P_{ABC}=15+20+25=60\)cm
\(\sqrt[3]{x+2}+\sqrt[3]{x-2}=\sqrt[3]{5x}\)
<=> \(x+2+x-2+3\sqrt[3]{x+2}.\sqrt[3]{x-2}\left(\sqrt[3]{x+2}+\sqrt[3]{x-2}\right)=5x\)
<=> \(2x+3\sqrt[3]{x^2-4}.\sqrt[3]{5x}=5x\)<=> \(3\sqrt[3]{5x\left(x^2-4\right)}=3x\)
<=> \(\sqrt[3]{5x\left(x^2-4\right)}=x\)<=> \(5x^3-20x=x^3\)
<=> \(4x^3-20x=0\)<=>\(4x\left(x^2-5\right)=0\)<=> \(\hept{\begin{cases}x=0\\x^2-5=0\end{cases}}\)
<=> x = 0 ; x =\(\sqrt{5}\); x = - \(\sqrt{5}\)
Vậy pt có tập nghiệm \(S=\left\{-\sqrt{5};0;\sqrt{5}\right\}\)
1)\(\sqrt{27\left(1-\sqrt{3}\right)^2}\div3\sqrt{15}=\left(3\sqrt{3}\left|1-\sqrt{3}\right|\right)\div3\sqrt{15}=\left(9-3\sqrt{3}\right)\div3\sqrt{15}\)
\(=\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{5}=\frac{\sqrt{15}-\sqrt{5}}{5}\)
2) ĐK : a > 0
\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(a-\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{a-\sqrt{a}+1}=a-1\)
3) \(\sqrt{15}-\sqrt{6}=\sqrt{3}\cdot\sqrt{5}-\sqrt{3}\cdot\sqrt{2}=\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)\)