37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x=6\)
\(\Rightarrow x.\left(x^2-1\right)=6\)
\(\Rightarrow x.\left(x-1\right).\left(x+1\right)=6\)
\(x^6-2x^4+x^3+x^2-x\)
\(=x^6-x^5+x^5-x^4-x^4+x^3+x^2-x\)
\(=x^5.\left(x-1\right)+x^4.\left(x-1\right)-x^3.\left(x-1\right)+x.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^5+x^4-x^3+x\right)\)
\(=\left(x-1\right).[x^4.\left(x+1\right)-x.\left(x^2-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).[x^4-x.\left(x-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).\left(x^4-x^2+x\right)\)
\(=x.\left(x-1\right).\left(x+1\right).\left(x^3-x+1\right)\)
\(=6.\left(6+1\right)\)
\(=42\)
Vậy giá trị của biểu thức \(B=42\)khi \(x^3-x=6\)
1)2xy−2y²+3x−3y1)2xy−2y²+3x−3y
=2y(x−y)+3(x−y)=2y(x−y)+3(x−y)
=(2y+3)(x−y)=(2y+3)(x−y)
2)x²−9y²+x+3y2)x²−9y²+x+3y
=x²−(3y)²+(x+3y)=x²−(3y)²+(x+3y)
=(x−3y)(x+3y)+(x+3y)=(x−3y)(x+3y)+(x+3y)
=(x−3y+1)(x+3y)=(x−3y+1)(x+3y)
3)3x(2x−3)−6x+93)3x(2x−3)−6x+9
=3x(2x−3)−3(2x−3)=3x(2x−3)−3(2x−3)
=(3x−3)(2x−3)=(3x−3)(2x−3)
=3(x−1)(2x−3)=3(x−1)(2x−3)
4)y²−25−x²−10x4)y²−25−x²−10x
=−(x²+10x+25)+y²=−(x²+10x+25)+y²
=−(x+5)²+y²=−(x+5)²+y²
=y²−(x+5)²=y²−(x+5)²
=(y−x−5)(y+x+5)=(y−x−5)(y+x+5)
5)x²−10x+245)x²−10x+24
=x²−4x−6x+24=x²−4x−6x+24
=x(x−4)−6(x−4)=x(x−4)−6(x−4)
=(x−6)(x−4)
=[(x+2)(x+5)][(x+3)(x+4)]−24=(x2+7x+10)(x2+7x+12)−24=(x2+7x+11)2−1−24=(x2+7x+11)2−25=(x2+7x+11−5)(x2+7x+11+5)=(x2+7x+6)(x2+7x+16)=(x+1)(x+6)(x2+7x+16)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
chọn A