Tìm các giá trị \(x,y\in\mathbb{N}\) sao cho:
\(x+xy+y=5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a không chia hết cho 3 nên \(a=3k+1\) hoặc \(a=3k+2\) với \(k\inℕ\)
Nếu \(a=3k+1\) thì \(a^2-1=\left(3k+1\right)^2-1=9k^2+6k⋮3\)
Nếu \(a=3k+2\) thì \(a^2-1=\left(3k+2\right)^2-1=9k^2+12k+3⋮3\)
Vậy ta có đpcm.
P = x(x - y) - x + y2(x - y) - y2 + 5
P = x - x + y2 - y2 + 5
P = 5
Q = x2(x - y) - x2 + y2(x - y) - y2 + 5(x - y) - 2015
Q = 5 - 2015
Q = -2010
Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3
Trong biểu thức không hề chứa \(x\) em nhá
Biểu thức chứa \(x\) là biểu thức nào thế em?
Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.
Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)
Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\)
Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)
Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)
Mỗi đơn thức được coi là một đa thức
Vậy 4\(xy^3\) là một đa thức là đúng em nhá
\(\dfrac{1}{\left|x-2y\right|}\) + |\(x\) + 2y| = 4
Hay \(\dfrac{1}{\left|x-2y\right|+\left|x+2y\right|}\) = 4 vậy em nhỉ
Bài 7:
Chu vi đáy là: 6 x 3 = 18 cm
=> nửa chu vi đáy là: 18 : 2 = 9 cm
Diện tích xung quanh là: 9 x 10 = 90 cm vuông
Bài 8: Nửa chu vi là: 12 x 3 : 2 = 18 cm
Diện tích xung quanh là: 18 x 15 = 270 cm vuông
Diện tích đáy là: 12 x 12 : 2 = 72 cm vuông
Thể tích là: 1/3 x 72 x 12 = 288 cm khối
Nếu f(1)=2 thì:
\(2+a+b+6=2\)
\(\Rightarrow a+b=-6\)
Nếu f(-1)=12 thì:
\(-2+a-b+6=12\)
\(\Rightarrow a-b=8\)
Giá trị a và b thoả mãn là rất lớn nên mình không lập bảng.
a, Xét tứ giác DMEC có: \(\widehat{D}\) = \(\widehat{A}\) = \(\widehat{C}\) = 900
⇒ Tứ giác DMEC là hình chữ nhật
⇒ AM = DE
b, MD \(\perp\) AB; AB \(\perp\) AC ⇒ MD// AC
Xét tam giác: ABC có:
MD//AC; MB = MC ⇒ AD = DB (vì trong tam giác đường thằng đi qua trung điểm một cạnh và song song với cạnh thứ hai thì nó đi qua điểm của cạnh còn lại)
Chứng minh tương tự ta có: EA = EC
Xét tam giác ABC có: AD = DB
MB = MC
⇒ DM song song và bằng CE
⇒ DMCE là hình bình hành
c, Chứng minh tương tự ý b ta có
DE // BC
Xét tam giác vuông ABH vuông tại H; DB = DA ⇒ HD = DB = AD
ME = AD = DB (vì ADME là hình chữ nhật)
⇒ HD = ME
⇒ DMHE là hình thang cân.
d, DE//BC ⇒ DE \(\perp\) AH; DA = DH ⇒ DE là trung trực của AH ⇒
A đối xứng với H qua DE
\(x\) + \(xy\) + y = 5 (\(x;y\in\) N)
(\(x\) + \(x\)y) = 5 - y
\(x\).(1 + y) = 5 - y
\(x\) = \(\dfrac{5-y}{1+y}\)
\(x\) \(\in\) N ⇔ 5 - y \(⋮\) 1 + y ⇒ -(y + 1) + 6 ⋮ 1 + y
⇒ 6 ⋮ 1 + y ⇒ y + 1 \(\in\) Ư(6) = {1; 2; 3; 6} ⇒ y \(\in\) {0; 1; 2; 5}
Lập bảng ta có:
Theo bảng trên ta có:
Các cặp số tự nhiên \(x\); y thỏa mãn đề bài lần lượt là:
(\(x;y\)) = (5; 0); (2;1); (1;2); (0; 5)