Tính giá trị biểu thức:
a, \(\sqrt{16-6\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
b, \(\sqrt{4-2\sqrt{3}}+\sqrt{3-\sqrt{13-4\sqrt{3}}}\)
c, \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
d, \(\sqrt{5+\sqrt{17+2\sqrt{7}}}+\sqrt{5-\sqrt{17+2\sqrt{7}}}\)
Giúp mình với ạ, mình đang cần gấp. Mình cảm ơn rất nhiều ạ!
Tính giá trị biểu thức:
a.
\(\sqrt{16-6\sqrt{7}}-\sqrt{16+6\sqrt{7}}=\sqrt{3^2-2.3\sqrt{7}+\sqrt{7}^2}-\sqrt{3^2+2.3\sqrt{7}+\sqrt{7}^2}\)
\(=\sqrt{\left(3-\sqrt{7}\right)^2}-\sqrt{\left(3+\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-\left(3+\sqrt{7}\right)=3-\sqrt{7}-3-\sqrt{7}\)
\(=-2\sqrt{7}\)
c. \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
bài b,d tương tự câu a. Đưa về hằng đẳng thức.
c. \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{(\sqrt{1}+\sqrt{2})\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})\left(\sqrt{3}-\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{(\sqrt{99}+\sqrt{100})\left(\sqrt{100}-\sqrt{99}\right)}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{\sqrt{2}^2-\sqrt{1}^2}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3^2}-\sqrt{2^2}}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\sqrt{100^2}-\sqrt{99^2}}\)
\(=\dfrac{\sqrt{2}-\sqrt{1}}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=-1+\sqrt{100}=-1+10=9\)
Đs