A=-a + b - 5a - 5b với a = -56 và b = 57
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 8102
= (84)25.82
= \(\overline{...6}\)25.4
= \(\overline{..4}\)
b, 20171991
= (20174)497.20173
= \(\overline{..1}\)497.\(\overline{..9}\)
= \(\overline{...9}\)
Ta có:
\(5566=2\cdot11^2\cdot23\)
\(1815=3\cdot11^2\cdot5\)
\(\Rightarrow BCNN\left(5566,1815\right)=2\cdot5\cdot3\cdot11^2\cdot23=83490\)
\(\Rightarrow BC\left(5566,1815\right)=B\left(83490\right)=\left\{0;83490;166980;250470;...\right\}\)
A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }
A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}
A = - 522 - { -222 - { - 222 + 522 } + 2022}
A = - 522 - {- 222 + 222 - 522 + 2022}
A = -522 + 522 - 2022
A = - 2022
B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)
B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2
B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2
B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)
B = \(\dfrac{2+3+4+...+21}{2}\)
B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)
B = \(\dfrac{23\times20:2}{2}\)
B = \(\dfrac{23\times10}{2}\)
B = 23
(2n + 28) ⋮ (n + 3) (n \(\ne\) -3)
(2n + 6 + 22) ⋮ (n + 3)
[2.(n + 3) + 22]⋮ (n + 3)
22 ⋮ (n + 30
(n + 3) \(\in\) Ư(22)
22 = 2.11 ⇒ Ư(22) = {-22; -11; -2; -1; 1; 2; 11; 22}
Lập bảng ta có:
n + 3 | - 22 | - 11 | - 2 | - 1 | 1 | 2 | 11 | 22 |
n | - 25 | - 14 | - 5 | - 4 | - 2 | - 1 | 8 | 19 |
Theo bảng trên ta có:
n \(\in\) {-25; -14; -5; -4; -2; -1; 8; 19}
ta có :
918=93.6=(93)6=276
vì 12>6
=> 2712>276
=>2712>918
a/
2020.2021=(2019+1)(2022-1)=
=2019.2022-2019+2022-1=2019.2022+2>2019.2022
b/
\(4^7=\left(2^2\right)^7=2^{14}< 2^{15}\)
c/
\(199^{20}< 200^{20}=\left(8.25\right)^{20}=\left(2^3.5^2\right)^{20}=2^{60}.5^{40}\)
\(2000^{15}=\left(16.125\right)^{15}=\left(2^4.5^3\right)^{15}=2^{60}.5^{45}\)
\(\Rightarrow2000^{15}=2^{60}.5^{45}>2^{60}.5^{40}>199^{20}\)
d/
\(31^{31}< 32^{31}=\left(2^5\right)^{31}=2^{155}\)
\(17^{39}>16^{39}=\left(2^4\right)^{39}=2^{156}\)
\(\Rightarrow17^{39}=2^{156}>2^{155}>31^{31}\)
\(A=-a+b-5a-5b\)
\(A=-\left(a-b\right)-5\left(a+b\right)\)
Thay a = -56 và b = 57 vào A ta có:
\(A=-\left(-56-57\right)-5\cdot\left(-56+57\right)\)
\(A=-\left(-113\right)-5\cdot1\)
\(A=113-5\)
\(A=108\)