(x2-2xy+y2)-z2
Phân tích đa thức sau thành phân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ta có: \(A\left(x\right)=4x^2+6x+10\)
\(\Rightarrow A\left(x\right)=4x^2+4.\frac{3}{2}x+4.\frac{5}{2}\)(Biến tất cả các hạng tử sao cho có nhân tử chung là 4 để làm mất hệ số 4 ở x^2)
\(\Rightarrow A\left(x\right)=4\left(x^2+\frac{3}{2}x+\frac{5}{2}\right)\)(Đấy, thấy số 4 đã ra ngoài chưa)
\(\Rightarrow A\left(x\right)=4\left(x^2+2.\frac{3}{4}x+\frac{9}{16}+\frac{31}{16}\right)\)
(Giờ đây ta lại biến đổi sao cho có hằng đẳng thức và mình đã tách 5/2 thành 9/16 + 31/16)
\(\Rightarrow A\left(x\right)=4\left\{\left[x^2+2.\frac{3}{4}x+\left(\frac{3}{4}\right)^2\right]+\frac{31}{16}\right\}\)(Cho vào trong ngoặc dễ thấy đc hằng đẳng thức)
\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\)(Đã sử dụng hằng đẳng thức \(A^2+2AB+B^2=\left(A+B\right)^2\))
Vì \(\left(x+\frac{3}{4}\right)^2\ge0\)(đây là điều hiển nhiên, bình phương của một số luôn lớn hơn hoặc bằng 0)
Nên \(\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)
\(\Rightarrow A\left(x\right)=4\left[\left(x+\frac{3}{4}\right)^2+\frac{31}{16}\right]\ge\frac{31}{4}\)(Nhân thêm 4 vào cả hai vế)
[A(x) sẽ nhỏ nhất nếu dấu lớn hơn hoặc bằng chuyển thành dấu bằng)]
Dấu "=" xảy ra khi và chỉ khi \(\left(x+\frac{3}{4}\right)^2=0\Leftrightarrow x+\frac{3}{4}=0\Leftrightarrow x=-\frac{3}{4}\)
\(\text{Vậy giá trị nhỏ nhất của A(x) là } \dfrac{31}4 \text{khi và chỉ khi } x=-\dfrac34 \)
ko biết
Giải
\(\left(x^2-2xy+y^2\right)-z^2\)
\(=\left(x-y\right)^2-z^2\)(Sử dụng hằng đẳng thức \(A^2-2AB+B^2=\left(A-B\right)^2\))
\(=\left(x-y+z\right)\left(x-y-z\right)\)(Sử dụng hằng đẳng thức \(A^2-B^2=\left(A+B\right)\left(A-B\right)\))
Vậy \(\left(x^2-2xy+y^2\right)-z^2=\left(x-y+z\right)\left(x-y-z\right)\)