chứng minh rằng nếu số nguyên n lớn hơn 1 thỏa mãn n^2+4 và n^2+16 là các số nguyên tố thì n chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6, \(\sqrt{xy}+2\sqrt{x}-3\sqrt{y}-6=\sqrt{x}\left(\sqrt{y}+2\right)-3\left(\sqrt{y}+2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{y}+2\right)\)
7, \(7+2\sqrt{10}=7+2\sqrt{5.2}=5+2\sqrt{5.2}+2=\left(\sqrt{5}+\sqrt{2}\right)^2\)
8, \(5-2\sqrt{6}=5-2\sqrt{2.3}=3-2\sqrt{2.3}+2=\left(\sqrt{3}-\sqrt{2}\right)^2\)
9, \(\sqrt{x^2-y^2}-x+y=\sqrt{\left(x-y\right)\left(x+y\right)}-\left(x-y\right)\)
\(=\sqrt{x-y}\left(\sqrt{x+y}-\sqrt{x-y}\right)\)
10, \(3x-2\sqrt{x}=\sqrt{x}\left(3\sqrt{x}-2\right)\)
1, \(\sqrt{xy}-x=\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)\)
2, \(x+y-2\sqrt{xy}=\left(\sqrt{x}-\sqrt{y}\right)^2\)
3, \(x\sqrt{y}-y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
4, \(2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}=2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)\)
\(=\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)\)
5, \(\sqrt{35}-\sqrt{14}=\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)\)
a, Ta có : \(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)
Thay vào A ta được : \(A=\frac{\sqrt{2}-1-3}{\sqrt{2}-1+2}=\frac{\sqrt{2}-4}{\sqrt{2}+1}=\left(\sqrt{2}-4\right)\left(\sqrt{2}-1\right)=6-5\sqrt{2}\)
b, Với \(x\ge0;x\ne4;9\)
\(B=\frac{\sqrt{x}+1}{\sqrt{x}-2}+\frac{2\sqrt{x}}{\sqrt{x}+2}+\frac{2+5\sqrt{x}}{4-x}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{x-4}\)
\(=\frac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}\)
\(=\frac{3x-6\sqrt{x}}{x-4}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
c, Ta có : \(\frac{B}{A}< 1\Rightarrow\frac{\sqrt{x}-3}{3\sqrt{x}}< 1\Leftrightarrow\frac{\sqrt{x}-3}{3\sqrt{x}}-1< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-3-3\sqrt{x}}{3\sqrt{x}}< 0\Leftrightarrow\frac{-2\sqrt{x}-3}{3\sqrt{x}}< 0\)
\(\Rightarrow-2\sqrt{x}-3< 0\Leftrightarrow-2\sqrt{x}< 3\Leftrightarrow4x< 9\Leftrightarrow x< \frac{9}{4}\)
Kết hợp với đk vậy 0 =< x < 9/4
d, \(\frac{\sqrt{x}-3}{3\sqrt{x}};3=\frac{9\sqrt{x}}{3\sqrt{x}}\Rightarrow9\sqrt{x}>\sqrt{x}-3\Rightarrow\frac{B}{A}< 3\)
a) Thay x vào A ta được : \(A=\frac{\sqrt{3-2\sqrt{2}}-3}{\sqrt{3-2\sqrt{2}+2}}=\frac{\sqrt{\left(\sqrt{2}-1\right)^2}-3}{\sqrt{\left(\sqrt{2}-1\right)^2}+2}=\frac{\sqrt{2}-1-3}{\sqrt{2}-1+2}=\frac{-4+\sqrt{2}}{1+\sqrt{2}}\)
\(=\frac{\left(-4+\sqrt{2}\right)\left(1-\sqrt{2}\right)}{1-2}=\frac{-4+5\sqrt{2}-2}{-1}=6-5\sqrt{2}\)
b) \(B=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+\sqrt{5}x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x+3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2+\sqrt{5}x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{3\sqrt{x}}{\sqrt{x}+2}\)
c) \(\frac{B}{A}< 1\Leftrightarrow\frac{\frac{3\sqrt{x}}{\sqrt{x}+2}}{\frac{\sqrt{x}-3}{\sqrt{x}+2}}< 1\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{\sqrt{x}-3}< 1\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}-3}-1< 0\)
\(\Leftrightarrow\frac{3\sqrt{x}}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)(1)
Vì \(2\sqrt{x}+3>0\)nên \(\left(1\right)\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp với ĐK => Với \(\hept{\begin{cases}0\le x< 9\\x\ne4\end{cases}}\)thì B/A < 1
d) mình đang kẹt ý d) bạn thông cảm ;-;
a, Với \(x\ge0;x\ne9\)
\(N=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}-\frac{\sqrt{x}-3}{2-\sqrt{x}}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{9-x+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\left(\frac{-3}{\sqrt{x}+3}\right):\left(\frac{9-x+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=-\frac{3}{\sqrt{x}+3}:\left(\frac{-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)=-\frac{3}{\sqrt{x}+3}.\left(-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)^2}\right)\)
\(=\frac{3}{\sqrt{x}-2}\)
b, Ta có : \(N< 0\Rightarrow\frac{3}{\sqrt{x}-2}< 0\Rightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Kết hợp với đk vậy 0 =< x < 4
c, Ta có : \(\sqrt{x}-2\ge-2\Rightarrow\frac{3}{\sqrt{x}-2}\le-\frac{3}{2}\)
Dấu ''='' xảy ra khi x = 0
Vậy GTLN của N bằng -3/2 tại x = 0
d, \(\frac{3}{\sqrt{x}-2}\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\sqrt{x}-2\) | 1 | -1 | 3 | -3 |
\(\sqrt{x}\) | 3 | 1 | 5 | loại |
x | 9 | 1 | 25 | loại |
e, Ta có : \(x=7-4\sqrt{3}=7-2.2\sqrt{3}=4-2.2\sqrt{3}+3=\left(2-\sqrt{3}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
Thay vào N ta được : \(\frac{3}{\sqrt{x}-2}\Rightarrow\frac{3}{2-\sqrt{3}-2}=\frac{3}{-\sqrt{3}}=-\sqrt{3}\)
ĐK: \(x\ge-4\).
\(2\sqrt{x+5+2\sqrt{x+4}}-\sqrt{x+4}=4\)
\(\Leftrightarrow2\sqrt{x+4+2\sqrt{x+4}+1}-\sqrt{x+4}=4\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x+4}+1\right)^2}-\sqrt{x+4}=4\)
\(\Leftrightarrow2\left(\sqrt{x+4}+1\right)-\sqrt{x+4}=4\)
\(\Leftrightarrow\sqrt{x+4}=2\)
\(\Leftrightarrow x=0\)(thỏa mãn)
\(2\sqrt{x+5+2\sqrt{x+4}}-\sqrt{x+4}=4\)( ĐK : x >= -4 )
\(\Leftrightarrow2\sqrt{\left(\sqrt{x+4}+1\right)^2}-\sqrt{x+4}=4\)
\(\Leftrightarrow2\left|\sqrt{x+4}+1\right|-\sqrt{x+4}=4\)
\(\Leftrightarrow2\left(\sqrt{x+4}+1\right)-\sqrt{x+4}=4\left(\sqrt{x+4}+1>0\right)\)
\(\Leftrightarrow2\sqrt{x+4}+2-\sqrt{x+4}=4\)
\(\Leftrightarrow\sqrt{x+4}=2\Leftrightarrow x=0\left(tm\right)\)
b, Ta có : \(M=\frac{4\sqrt{x}}{x+2\sqrt{x}+1}=\frac{8}{9}\Rightarrow36\sqrt{x}=8x+16\sqrt{x}+8\)
\(\Leftrightarrow8x-20\sqrt{x}+8=0\Leftrightarrow2x-5\sqrt{x}+2=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\Leftrightarrow x=4;x=\frac{1}{4}\)
\(A=2-x\sqrt{\frac{x\left(x-2\right)}{\left(x-2\right)^2}+\frac{1}{\left(x-2\right)^2}}=2-x\sqrt{\frac{\left(x-1\right)^2}{\left(x-2\right)^2}}\)
\(=2-x\cdot\frac{x-1}{x-2}=\frac{2x-4}{x-2}-\frac{x^2-x}{x-2}=\frac{-x^2+3x-4}{x-2}\)
\(B=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+\frac{3\sqrt{5}x^2}{x}=\frac{2\sqrt{5}x}{x-2}\cdot\left|x-2\right|+3\sqrt{5}x\)
Với 0 < x < 2 \(B=-2\sqrt{5}x+3\sqrt{5}x=\sqrt{5}x\)
Với x > 2 \(B=2\sqrt{5}x+3\sqrt{5}x=5\sqrt{5}x\)
\(C=\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\sqrt{x}\left(\sqrt{x}+5\right)}+\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-5\right)^2}}=\frac{\sqrt{x}-5}{\sqrt{x}}+\left|\frac{\sqrt{x}-1}{\sqrt{x}-5}\right|\)
Với 0 < x < 1 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với 1 < x < 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}-\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{-9\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
Với x > 5 \(C=\frac{\sqrt{x}-5}{\sqrt{x}}+\frac{\sqrt{x}-1}{\sqrt{x}-5}=\frac{x-10\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}+\frac{x-\sqrt{x}}{x\left(\sqrt{x}-5\right)}=\frac{2x-11\sqrt{x}+25}{x\left(\sqrt{x}-5\right)}\)
đề là \(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3\)đúng ko bạn
\(\left(\sqrt{2}+1-\sqrt{2}+1\right)\left[\left(\sqrt{2}+1\right)^2+\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\left(\sqrt{2}-1\right)^2\right]\)
\(=2\left(2+1+2\sqrt{2}+\sqrt{2-1}+2-2\sqrt{2}+1\right)\)
\(=2\left(3+\sqrt{1}+3\right)\)
\(=2\left(6+1\right)\)
\(=14\)
\(b,\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{2+\sqrt{3}+1}+\frac{2\sqrt{2}-\sqrt{6}}{2-\sqrt{3}+1}\)
\(=\frac{2\sqrt{2}+\sqrt{6}}{3+\sqrt{3}}+\frac{2\sqrt{2}-\sqrt{6}}{3-\sqrt{3}}\)
\(=\frac{\left(2\sqrt{2}+\sqrt{6}\right)\left(3-\sqrt{3}\right)+\left(2\sqrt{2}-6\right)\left(3+\sqrt{3}\right)}{9-3}\)
\(=\frac{6\sqrt{2}+3\sqrt{6}-2\sqrt{6}-3\sqrt{2}+6\sqrt{2}-3\sqrt{6}+2\sqrt{6}-3\sqrt{2}}{6}\)
\(=\frac{6\sqrt{2}}{6}=\sqrt{2}\)
vậy câu hỏi của bạn là gì